logo

SCIENTIA SINICA Informationis, Volume 47 , Issue 3 : 385-400(2017) https://doi.org/10.1360/N112016-00061

Neural networks based on doublet generator synapses and its \\applications in image processing}{Neural networks based on doublet generator synapses and its applications in image processing

More info
  • ReceivedMar 24, 2016
  • AcceptedApr 21, 2016
  • PublishedNov 28, 2016

Abstract


Funded by

国家自然科学基金(61372139)

国家自然科学基金(61571372)

国家自然科学基金(61101233)

国家自然科学基金(60972155)

新世纪优秀人才支持计划(教技函[2013]47号)

教育部``春晖计划''科研项目(z2011148)

中央高校基本科研业务费专项资金(XDJK2016A001)

中央高校基本科研业务费专项资金(XDJK- 2014A009)

留学人员科技活动项目择优资助经费(渝人社办[2012]186号)

重庆市高等学校优秀人才支持计划(批准\\号 渝教人[2011]65号)


References

[1] Damasio A R. The Scientific American Book of the Brain. New York: Globe Pequot, 2001. Google Scholar

[2] Chua L O. Memristor-the missing circuit element. IEEE Trans Circ Theory, 1971, 18: 507-519 CrossRef Google Scholar

[3] Strukov D B, Snider G S, Stewart D R, et al. The missing memristor found. Nature, 2008, 453: 80-83 CrossRef Google Scholar

[4] Afifi A, Ayatollahi A, Raissi F. STDP implementation using memristive nanodevice in CMOS-Nano neuromorphic networks. IEICE Electron Express, 2009, 6: 148-153 CrossRef Google Scholar

[5] Laiho M, Lehtonen E, Russel A, et al. Memristive synapses are becoming reality. The Neuromorphic Engineer, 2010, doi: 10.2417/1201011.003396. Google Scholar

[6] Afifi A, Ayatollahi A, Raissi F. Implementation of biologically plausible spiking neural network models on the memristor crossbar-based CMOS/nano circuits. In: Proceedings of European Conference on Circuit Theory and Design, Antalya, 2009. 563-566. Google Scholar

[7] Ventra M D, Pershin Y V, Chua L O. Circuit elements with memory: memristors, memcapacitors, and meminductors. Proc IEEE, 2009, 97: 1717-1724 CrossRef Google Scholar

[8] Cantley K D, Subramaniam A, Stiegler H J, et al. Hebbian learning in spiking neural networks with nanocrystalline silicon TFTs and memristive synapses. IEEE Trans Nanotech, 2011, 10: 1066-1073 CrossRef Google Scholar

[9] Li T S, Duan S K, Liu J, et al. A spintronic memristor-based neural network with radial basis function for robotic manipulator control implementation. IEEE Trans Syst Man Cybernetics Syst, 2015, 46: 582-588. Google Scholar

[10] Wang H M, Duan S K, Huang T W, et al. Exponential stability of complex-valued memristive recurrent neural networks. IEEE Trans Neural Netw Learn Syst, 2015, 99: 1-6. Google Scholar

[11] Duan S K, Wang H M, Wang L D, et al. Impulsive effects and stability analysis on memristive neural networks with variable delays. IEEE Trans Neural Netw Learn Syst, in press. doi: 10.1109/TNNLS,2015.2497319. Google Scholar

[12] Wang L D, Duan M T, Duan S K, et al. Neural networks based on STDP rules and memristor bridge synapses with applications in image processing. Sci Sin Inform, 2014, 44: 920-930 [王丽丹, 段美涛, 段书凯, 等. 基于STDP规则和忆阻桥突触的神经网络及图像处理. 中国科学: 信息科学, 2014, 44: 920-930]. Google Scholar

[13] Duan S K, Hu X F, Dong Z K, et al. Memristor-based cellular nonlinear/neural network: design, analysis, and applications. IEEE Trans Neural Netw Learn Syst, 2015, 26: 1202-1213 CrossRef Google Scholar

[14] Meng F Y, Duan S K, Wang L D, et al. An improved WO$_{x}$ memristor mo del with synapse characteristic analysis. Acta Phys Sin, 2015, 64: 148501 [孟凡一, 段书凯, 王丽丹, 等. 一种改进的WO$_{x}$忆阻器模型及其突触特性分析. 物理学报, 2015, 64: 148501]. Google Scholar

[15] Jo S H, Chang T, Ebong I, et al. Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett, 2010, 10: 1297-1301 CrossRef Google Scholar

[16] Corinto F, Ascoli A, Kim Y S, et al. Cellular Nonlinear Networks With Memristor Synapses. Berlin: Springer International Publishing, 2014. Google Scholar

[17] Adhikari S P, Kim H. A circuit-based learning architecture for multilayer neural networks with memristor bridge synapses. IEEE Trans Circ Syst I Regular Papers, 2015, 62: 215-223 CrossRef Google Scholar

[18] Chua L O, Yang L. Cellular neural networks: theory. IEEE Trans Circ Syst, 1988, 35: 1257-1272 CrossRef Google Scholar

[19] Chua L O, Yang L. Cellular neural networks: applications. IEEE Trans Circ Syst, 1988, 35: 1273-1290 CrossRef Google Scholar

[20] Kim H, Sah P, Yang C, et al. Memristor bridge synapses. Proc IEEE, 2012, 100: 2061-2070 CrossRef Google Scholar

[21] Kim H, Sah M P, Yang C, et al. Neural synaptic weighting with a pulse-based memristor circuit. IEEE Trans Circ Syst I Regular Papers, 2011, 59: 148-158. Google Scholar

[22] Adhikari S P, Kim H, Kong B S, et al. Memristance drift avoidance with charge bouncing for memristor-based nonvolatile memories. J Korean Phys Soc, 2012, 61: 1418-1421 CrossRef Google Scholar

[23] Li Q J. The discussion of the application of the definition of derivative. Sci Tech Inform, 2012, 33: 690-691 [李庆娟. 浅谈导数定义的应用. 科学信息, 2012, 33: 690-691]. Google Scholar

[24] Hu X F, Duan S K, Wang L D, et al. Memristive crossbar array with applications in image processing. Sci China Inf Sci, 2012, 55: 461-472 CrossRef Google Scholar