References
[1]
Shoshani A. Statistical databases: characteristics, problems, and some solutions. In: Proceedings of the 8th International Conference on Very Large Data Bases, Mexico City, 1982. 208-222.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Shoshani A. Statistical databases: characteristics, problems, and some solutions. In: Proceedings of the 8th International Conference on Very Large Data Bases, Mexico City, 1982. 208-222&
[2]
Shoshani A, Olken F, Wong H K T. Characteristics of scientific databases. In: Proceedings of the 10th International Conference on Very Large Data Bases, Singapore, 1984. 147-160.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Shoshani A, Olken F, Wong H K T. Characteristics of scientific databases. In: Proceedings of the 10th International Conference on Very Large Data Bases, Singapore, 1984. 147-160&
[3]
Shoshani A, Wong H K T. Statistical and scientific database issues. IEEE Trans Softw Eng, 1985, 11: 1040-1047.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Shoshani A, Wong H K T. Statistical and scientific database issues. IEEE Trans Softw Eng, 1985, 11: 1040-1047&
[4]
Turing A M. On computable numbers, with an application to the entscheidungs problem. Proc London Math Soc, 1936, 2: 230-265.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Turing A M. On computable numbers, with an application to the entscheidungs problem. Proc London Math Soc, 1936, 2: 230-265&
[5]
李建中. 大数据计算的挑战. 见: 香山科学会议, 北京, 2012.
Google Scholar
http://scholar.google.com/scholar_lookup?title=李建中. 大数据计算的挑战. 见: 香山科学会议, 北京, 2012&
[6]
李建中. 大数据计算的基本概念与研究问题. 见: 国家基金委第89期双清论坛, 上海, 2014.
Google Scholar
http://scholar.google.com/scholar_lookup?title=李建中. 大数据计算的基本概念与研究问题. 见: 国家基金委第89期双清论坛, 上海, 2014&
[7]
Li J Z. Complexity, algorithms and quality of big data intensive computing. In: Proceedings of the 19th International Conference on Database Systems for Advanced Applications, Bali, 2014. 230-265.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Li J Z. Complexity, algorithms and quality of big data intensive computing. In: Proceedings of the 19th International Conference on Database Systems for Advanced Applications, Bali, 2014. 230-265&
[8]
李建中. 大数据计算的研究问题和部分解. 见: 第30届中国数据库学术会议, 哈尔滨, 2013.
Google Scholar
http://scholar.google.com/scholar_lookup?title=李建中. 大数据计算的研究问题和部分解. 见: 第30届中国数据库学术会议, 哈尔滨, 2013&
[9]
Kleene
S C.
General recursive functions of natural numbers.
MATH ANN,
1936, 112: 727-742
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=General recursive functions of natural numbers&author=Kleene S C&publication_year=1936&journal=MATH ANN&volume=112&pages=727-742
[10]
Post
E L.
Finite combinatory processes-formulation 1.
J Symb Log,
1936, 1: 103-105
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Finite combinatory processes-formulation 1&author=Post E L&publication_year=1936&journal=J Symb Log&volume=1&pages=103-105
[11]
Church A. The Calculi of Lambda-Conversion. Princeton: Princeton University Press, 1951.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Church A. The Calculi of Lambda-Conversion. Princeton: Princeton University Press, 1951&
[12]
Kleene S C. Introduction to Metamathematics. Japan: Ishi Press, 1952.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Kleene S C. Introduction to Metamathematics. Japan: Ishi Press, 1952&
[13]
Hermes H. Enumerability, Decidability, Computability. Berlin: Springer, 1965.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Hermes H. Enumerability, Decidability, Computability. Berlin: Springer, 1965&
[14]
Minsky M L. Computation: Finite and Infinite Machines. Upper Saddle River: Prentice-Hall Inc., 1967.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Minsky M L. Computation: Finite and Infinite Machines. Upper Saddle River: Prentice-Hall Inc., 1967&
[15]
Davis M. Computability and Unsolvability. New York: McGraw-Hill, 1958.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Davis M. Computability and Unsolvability. New York: McGraw-Hill, 1958&
[16]
Shepherdson
J C,
Sturgis
H E.
Computability of recursive functions.
J ACM,
1963, 10: 217-255
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Computability of recursive functions&author=Shepherdson J C&author=Sturgis H E&publication_year=1963&journal=J ACM&volume=10&pages=217-255
[17]
Cook S A, Reckhow R A. Time-bounded random access machines. In: Proceedings of the 4th Annual ACM Symposium on Theory of Computing, Denver, 1972. 73-80.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Cook S A, Reckhow R A. Time-bounded random access machines. In: Proceedings of the 4th Annual ACM Symposium on Theory of Computing, Denver, 1972. 73-80&
[18]
Harrison M A. Introduction to Switching and Automata Theory. New York: MacGraw-Hill, 1965.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Harrison M A. Introduction to Switching and Automata Theory. New York: MacGraw-Hill, 1965&
[19]
Savage J E. The Complexity of Computing. New York: Wiley, 1976.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Savage J E. The Complexity of Computing. New York: Wiley, 1976&
[20]
Steven F, James W. Parallelism in random access machines. In: Proceedings of the 10th Annual ACM Aymposium on Theory of Computing, San Diego, 1978. 114-118.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Steven F, James W. Parallelism in random access machines. In: Proceedings of the 10th Annual ACM Aymposium on Theory of Computing, San Diego, 1978. 114-118&
[21]
van Leeuwen J. Handbook of Theoretical Computer Science (vol. A): Algorithms and Complexity. Cambridge: MIT Press, 1991.
Google Scholar
http://scholar.google.com/scholar_lookup?title=van Leeuwen J. Handbook of Theoretical Computer Science (vol. A): Algorithms and Complexity. Cambridge: MIT Press, 1991&
[22]
Karloff H, Suri S, Vassilvitskii S. A model of computation for mapreduce. In: Proceedings of the 21st Annual ACM-SIAM Symposium on Discrete Algorithms, Austin, 2010. 938-948.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Karloff H, Suri S, Vassilvitskii S. A model of computation for mapreduce. In: Proceedings of the 21st Annual ACM-SIAM Symposium on Discrete Algorithms, Austin, 2010. 938-948&
[23]
Sarma
A D,
Afrati
F N,
Salihoqlu
S, et al.
Upper and lower bounds on the cost of a map-reduce computation.
Proc VLDB Endowment,
2013, 6: 277-288
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Upper and lower bounds on the cost of a map-reduce computation&author=Sarma A D&author=Afrati F N&author=Salihoqlu S&publication_year=2013&journal=Proc VLDB Endowment&volume=6&pages=277-288
[24]
Tao Y F, Lin W Q, Xiao X K. Minimal mapreduce algorithms. In: Proceedings of ACM SIGMOD International Conference on Management of Data, New York, 2013. 529-540.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Tao Y F, Lin W Q, Xiao X K. Minimal mapreduce algorithms. In: Proceedings of ACM SIGMOD International Conference on Management of Data, New York, 2013. 529-540&
[25]
Afrati F N, Borkar V, Carey M, et al. Map-reduce extensions and recursive queries. In: Proceedings of the 14th International Conference on Extending Database Technology, Uppsala, 2011. 1-8.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Afrati F N, Borkar V, Carey M, et al. Map-reduce extensions and recursive queries. In: Proceedings of the 14th International Conference on Extending Database Technology, Uppsala, 2011. 1-8&
[26]
Afrati F N, Ullman J D. Optimizing joins in a map-reduce environment. In: Proceedings of the 13th International Conference on Extending Database Technology, Lausanne, 2010. 99-110.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Afrati F N, Ullman J D. Optimizing joins in a map-reduce environment. In: Proceedings of the 13th International Conference on Extending Database Technology, Lausanne, 2010. 99-110&
[27]
Afrati F N, Ullman J D. Transitive closure and recursive datalog implemented on clusters. In: Proceedings of the 15th International Conference on Extending Database Technology, Berlin, 2012. 132-143.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Afrati F N, Ullman J D. Transitive closure and recursive datalog implemented on clusters. In: Proceedings of the 15th International Conference on Extending Database Technology, Berlin, 2012. 132-143&
[28]
Afrati F N, Fotakis D, Ullman J D. Enumerating subgraph instances using map-reduce. In: Proceedings of IEEE 29th International Conference on Data Engineering (ICDE), Brisbane, 2013. 62-73.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Afrati F N, Fotakis D, Ullman J D. Enumerating subgraph instances using map-reduce. In: Proceedings of IEEE 29th International Conference on Data Engineering (ICDE), Brisbane, 2013. 62-73&
[29]
Afrati F N, Sarma A D, Menestrina D, et al. Fuzzy joins using mapreduce. In: Proceedings of IEEE 28th International Conference on Data Engineering (ICDE), Washington, 2012. 498-509.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Afrati F N, Sarma A D, Menestrina D, et al. Fuzzy joins using mapreduce. In: Proceedings of IEEE 28th International Conference on Data Engineering (ICDE), Washington, 2012. 498-509&
[30]
Afrati
F N,
Koutris
P,
Suciu
D, et al.
Parallel skyline queries.
Theory Comput Syst,
2015, 57: 1008-1037
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Parallel skyline queries&author=Afrati F N&author=Koutris P&author=Suciu D&publication_year=2015&journal=Theory Comput Syst&volume=57&pages=1008-1037
[31]
Beame P, Koutris P, Suciu D. Communication steps for parallel query processing. In: Proceedings of the 32nd ACM Symposium on Principles of Database Systems, New York, 2013. 273-284.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Beame P, Koutris P, Suciu D. Communication steps for parallel query processing. In: Proceedings of the 32nd ACM Symposium on Principles of Database Systems, New York, 2013. 273-284&
[32]
Fan
W F,
Geerts
F,
Neven
F.
Making queries tractable on big data with preprocessing.
Proc VLDB Endowment,
2013, 6: 685-696
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Making queries tractable on big data with preprocessing&author=Fan W F&author=Geerts F&author=Neven F&publication_year=2013&journal=Proc VLDB Endowment&volume=6&pages=685-696
[33]
Dean J, Ghemawat S. Mapreduce: simplified data processing on large clusters. Commun ACM, 2008, 51: 107-113.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Dean J, Ghemawat S. Mapreduce: simplified data processing on large clusters. Commun ACM, 2008, 51: 107-113&
[34]
Wang J B, Wu S, Gao H, et al. Indexing multi-dimensional data in a cloud system. In: Proceedings of ACM SIGMOD International Conference on Management of Data, Indianapolis, 2010. 591-602.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Wang J B, Wu S, Gao H, et al. Indexing multi-dimensional data in a cloud system. In: Proceedings of ACM SIGMOD International Conference on Management of Data, Indianapolis, 2010. 591-602&
[35]
Alper O, Mirek R. Processing theta-joins using mapreduce. In: Proceedings of the 2011 ACM SIGMOD International Conference on Management of Data, Athens, 2011. 949-960.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Alper O, Mirek R. Processing theta-joins using mapreduce. In: Proceedings of the 2011 ACM SIGMOD International Conference on Management of Data, Athens, 2011. 949-960&
[36]
Kim Y, Shim K. Parallel top-k similarity join algorithms using mapreduce. In: Proceedings of IEEE 28th International Conference on Data Engineering (ICDE), Washington, 2012. 510-521.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Kim Y, Shim K. Parallel top-k similarity join algorithms using mapreduce. In: Proceedings of IEEE 28th International Conference on Data Engineering (ICDE), Washington, 2012. 510-521&
[37]
Lu
W,
Shen
Y Y,
Chen
S, et al.
Efficient processing of k nearest neighbor joins using mapreduce.
Proc VLDB Endowment,
2012, 5: 1016-1027
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Efficient processing of k nearest neighbor joins using mapreduce&author=Lu W&author=Shen Y Y&author=Chen S&publication_year=2012&journal=Proc VLDB Endowment&volume=5&pages=1016-1027
[38]
Zhang
X F,
Chen
L,
Wang
M.
Efficient multi-way theta-join processing using mapreduce.
Proc VLDB Endowment,
2012, 5: 1184-1195
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Efficient multi-way theta-join processing using mapreduce&author=Zhang X F&author=Chen L&author=Wang M&publication_year=2012&journal=Proc VLDB Endowment&volume=5&pages=1184-1195
[39]
Chen G, Vo H T, Wu S, et al. A framework for supporting dbms-like indexes in the cloud. Proc VLDB Endowment, 2011, 4: 702-713.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Chen G, Vo H T, Wu S, et al. A framework for supporting dbms-like indexes in the cloud. Proc VLDB Endowment, 2011, 4: 702-713&
[40]
Miliaraki I, Berberich K, Gemulla R, et al. Mind the gap: large-scale frequent sequence mining. In: Proceedings of ACM SIGMOD International Conference on Management of Data, New York, 2013. 797-808.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Miliaraki I, Berberich K, Gemulla R, et al. Mind the gap: large-scale frequent sequence mining. In: Proceedings of ACM SIGMOD International Conference on Management of Data, New York, 2013. 797-808&
[41]
Amol G, Rajasekar K, Edwin P D P, et al. Systemml: declarative machine learning on mapreduce. In: Proceedings of IEEE 27th International Conference on Data Engineering (ICDE), Hannover, 2011. 231-242.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Amol G, Rajasekar K, Edwin P D P, et al. Systemml: declarative machine learning on mapreduce. In: Proceedings of IEEE 27th International Conference on Data Engineering (ICDE), Hannover, 2011. 231-242&
[42]
Zhang Z J, Shu H, Chong Z H, et al. C-cube: elastic continuous clustering in the cloud. In: Proceedings of IEEE 29th International Conference on Data Engineering (ICDE), Brisbane, 2013. 577-588.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Zhang Z J, Shu H, Chong Z H, et al. C-cube: elastic continuous clustering in the cloud. In: Proceedings of IEEE 29th International Conference on Data Engineering (ICDE), Brisbane, 2013. 577-588&
[43]
Pansare N, Borkar V R, Jermaine C, et al. Online aggregation for large mapreduce jobs. Proc VLDB Endowment, 2011, 4: 1135-1145.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Pansare N, Borkar V R, Jermaine C, et al. Online aggregation for large mapreduce jobs. Proc VLDB Endowment, 2011, 4: 1135-1145&
[44]
Grover R, Carey M J. Extending map-reduce for efficient predicate-based sampling. In: Proceedings of IEEE 28th International Conference on Data Engineering (ICDE), Washington, 2012. 486-497.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Grover R, Carey M J. Extending map-reduce for efficient predicate-based sampling. In: Proceedings of IEEE 28th International Conference on Data Engineering (ICDE), Washington, 2012. 486-497&
[45]
Jestes
J,
Yi
K,
Li
F F.
Building wavelet histograms on large data in mapreduce.
Proc VLDB Endowment,
2011, 5: 109-120
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Building wavelet histograms on large data in mapreduce&author=Jestes J&author=Yi K&author=Li F F&publication_year=2011&journal=Proc VLDB Endowment&volume=5&pages=109-120
[46]
Huang B T, Babu S, Yang J. Cumulon: optimizing statistical data analysis in the cloud. In: Proceedings of ACM SIGMOD International Conference on Management of Data, New York, 2013. 1-12.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Huang B T, Babu S, Yang J. Cumulon: optimizing statistical data analysis in the cloud. In: Proceedings of ACM SIGMOD International Conference on Management of Data, New York, 2013. 1-12&
[47]
Zhang C, Ré C. Towards high-throughput gibbs sampling at scale: a study across storage managers. In: Proceedings of ACM SIGMOD International Conference on Management of Data, New York, 2013. 397-408.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Zhang C, Ré C. Towards high-throughput gibbs sampling at scale: a study across storage managers. In: Proceedings of ACM SIGMOD International Conference on Management of Data, New York, 2013. 397-408&
[48]
Zheng Y, Jestes J, Phillips J M, et al. Quality and efficiency for kernel density estimates in large data. In: Proceedings of ACM SIGMOD International Conference on Management of Data, New York, 2013. 433-444.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Zheng Y, Jestes J, Phillips J M, et al. Quality and efficiency for kernel density estimates in large data. In: Proceedings of ACM SIGMOD International Conference on Management of Data, New York, 2013. 433-444&
[49]
Wong
H K T,
Li
J Z,
Olken
F, et al.
Bit transposition for very large scientific and statistical databases.
Algorithmica,
1986, 1: 289-309
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Bit transposition for very large scientific and statistical databases&author=Wong H K T&author=Li J Z&author=Olken F&publication_year=1986&journal=Algorithmica&volume=1&pages=289-309
[50]
Li J Z, Rotem D, Wong H K T. A new compression method with fast searching on large databases. In: Proceedings of the 13th International Conference on Very Large Data Bases, Brighton, 1987. 311-318.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Li J Z, Rotem D, Wong H K T. A new compression method with fast searching on large databases. In: Proceedings of the 13th International Conference on Very Large Data Bases, Brighton, 1987. 311-318&
[51]
Li J Z, Harry K T W, Doron R. Batched interpolation searching on databases. In: Proceedings of the IEEE 3rd International Conference on Data Engineering (ICDE), Los Angeles, 1987. 79-97.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Li J Z, Harry K T W, Doron R. Batched interpolation searching on databases. In: Proceedings of the IEEE 3rd International Conference on Data Engineering (ICDE), Los Angeles, 1987. 79-97&
[52]
Wong H K T, Li J Z, Wong H K T, et al. Transposition algorithms on very large compressed databases. In: Proceedings of the 12th International Conference on Very Large Data Bases, Kyoto, 1986. 304-311.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Wong H K T, Li J Z, Wong H K T, et al. Transposition algorithms on very large compressed databases. In: Proceedings of the 12th International Conference on Very Large Data Bases, Kyoto, 1986. 304-311&
[53]
Li J Z, Rotem D, Srivastava J. Aggregation algorithms for very large compressed data warehouses. In: Proceedings of the 25th International Conference on Very Large Data Bases, Edinburgh, 1999. 651-662.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Li J Z, Rotem D, Srivastava J. Aggregation algorithms for very large compressed data warehouses. In: Proceedings of the 25th International Conference on Very Large Data Bases, Edinburgh, 1999. 651-662&
[54]
Wu
W L,
Gao
H,
Li
J Z.
New algorithm for computing cube on very large compressed data sets.
IEEE Trans Knowl Data Eng,
2006, 18: 1667-1680
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=New algorithm for computing cube on very large compressed data sets&author=Wu W L&author=Gao H&author=Li J Z&publication_year=2006&journal=IEEE Trans Knowl Data Eng&volume=18&pages=1667-1680
[55]
Fan W F, Li J Z, Wang X, et al. Query preserving graph compression. In: Proceedings of ACM SIGMOD International Conference on Management of Data, Scottsdale, 2012. 157-168.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Fan W F, Li J Z, Wang X, et al. Query preserving graph compression. In: Proceedings of ACM SIGMOD International Conference on Management of Data, Scottsdale, 2012. 157-168&
[56]
Zhang S, Li J Z, Gao H, et al. A novel approach for efficient supergraph query processing on graph databases. In: Proceedings of the 12th International Conference on Extending Database Technology, Petersburg, 2009. 204-215.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Zhang S, Li J Z, Gao H, et al. A novel approach for efficient supergraph query processing on graph databases. In: Proceedings of the 12th International Conference on Extending Database Technology, Petersburg, 2009. 204-215&
[57]
Cheng S Y, Li J Z. Sampling based (epsilon, delta)-approximate aggregation algorithm in sensor networks. In: Proceedings of the 29th IEEE International Conference on Distributed Computing Systems (ICDCS), Montreal, 2009. 273-280.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Cheng S Y, Li J Z. Sampling based (epsilon, delta)-approximate aggregation algorithm in sensor networks. In: Proceedings of the 29th IEEE International Conference on Distributed Computing Systems (ICDCS), Montreal, 2009. 273-280&
[58]
Li
J Z,
Cheng
S Y.
({\(\varepsilon\)}, {\(\delta\)})-approximate aggregation algorithms in dynamic sensor networks.
IEEE Trans Parall Distrib Syst,
2012, 23: 385-396
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=({\(\varepsilon\)}, {\(\delta\)})-approximate aggregation algorithms in dynamic sensor networks&author=Li J Z&author=Cheng S Y&publication_year=2012&journal=IEEE Trans Parall Distrib Syst&volume=23&pages=385-396
[59]
Cheng S Y, Li J Z, Ren Q Q, et al. Bernoulli sampling based ({\(\varepsilon\)}, {\(\delta\)})-approximate aggregation in large-scale sensor networks. In: Proceedings of IEEE Conference on Computer Communications (INFOCOM), San Diego, 2010. 1181-1189.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Cheng S Y, Li J Z, Ren Q Q, et al. Bernoulli sampling based ({\(\varepsilon\)}, {\(\delta\)})-approximate aggregation in large-scale sensor networks. In: Proceedings of IEEE Conference on Computer Communications (INFOCOM), San Diego, 2010. 1181-1189&
[60]
Cheng S Y, Cai Z P, Li J Z, et al. Drawing dominant dataset from big sensory data in wireless sensor networks. In: Proceedings of the IEEE Conference on Computer Communications (INFOCOM), Kowloon, 2015. 147-152.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Cheng S Y, Cai Z P, Li J Z, et al. Drawing dominant dataset from big sensory data in wireless sensor networks. In: Proceedings of the IEEE Conference on Computer Communications (INFOCOM), Kowloon, 2015. 147-152&
[61]
Liu
Y,
Li
J Z,
Gao
H, et al.
Enabling {\(\varepsilon\)}-approximate querying in sensor networks.
Proc VLDB Endowment,
2009, 2: 169-180
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Enabling {\(\varepsilon\)}-approximate querying in sensor networks&author=Liu Y&author=Li J Z&author=Gao H&publication_year=2009&journal=Proc VLDB Endowment&volume=2&pages=169-180
[62]
Gao J, Li J Z, Zhang Z G, et al. An incremental data stream clustering algorithm based on dense units detection. In: Proceedings of the 9th Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining (PAKDD), Hanoi, 2005. 420-425.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Gao J, Li J Z, Zhang Z G, et al. An incremental data stream clustering algorithm based on dense units detection. In: Proceedings of the 9th Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining (PAKDD), Hanoi, 2005. 420-425&
[63]
Fan W F, Li J Z, Luo J Z, et al. Incremental graph pattern matching. In: Proceedings of ACM SIGMOD International Conference on Management of Data, Athens, 2011. 925-936.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Fan W F, Li J Z, Luo J Z, et al. Incremental graph pattern matching. In: Proceedings of ACM SIGMOD International Conference on Management of Data, Athens, 2011. 925-936&
[64]
Fan W F, Li J Z, Tang N, et al. Incremental detection of inconsistencies in distributed data. In: Proceedings of IEEE 28th International Conference on Data Engineering (ICDE), Washington, 2012. 318-329.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Fan W F, Li J Z, Tang N, et al. Incremental detection of inconsistencies in distributed data. In: Proceedings of IEEE 28th International Conference on Data Engineering (ICDE), Washington, 2012. 318-329&
[65]
Brodal G S, Tsakalidis K, Sioutas S, et al. Fully persistent b-trees. In: Proceedings of the 23rd Annual ACM-SIAM Symposium on Discrete Algorithms, Kyoto, 2012. 602-614.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Brodal G S, Tsakalidis K, Sioutas S, et al. Fully persistent b-trees. In: Proceedings of the 23rd Annual ACM-SIAM Symposium on Discrete Algorithms, Kyoto, 2012. 602-614&
[66]
Ulrich M, Norbert Z. I/O-efficient shortest path algorithms for undirected graphs with random or bounded edge lengths. ACM Trans Algorithms, 2012, 8: 22.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Ulrich M, Norbert Z. I/O-efficient shortest path algorithms for undirected graphs with random or bounded edge lengths. ACM Trans Algorithms, 2012, 8: 22&
[67]
Rasmussen C K, Tao Y F, Tsakalidis K, et al. I/O-efficient planar range skyline and attrition priority queues. In: Proceedings of the 32nd ACM Symposium on Principles of Database Systems, New York, 2013. 103-114.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Rasmussen C K, Tao Y F, Tsakalidis K, et al. I/O-efficient planar range skyline and attrition priority queues. In: Proceedings of the 32nd ACM Symposium on Principles of Database Systems, New York, 2013. 103-114&
[68]
Huang J W, Venkatraman K, Abadi D J. Query optimization of distributed pattern matching. In: Proceedings of IEEE 30th International Conference on Data Engineering (ICDE), Chicago, 2014. 64-75.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Huang J W, Venkatraman K, Abadi D J. Query optimization of distributed pattern matching. In: Proceedings of IEEE 30th International Conference on Data Engineering (ICDE), Chicago, 2014. 64-75&
[69]
Deng D, Li G L, Hao S, et al. Massjoin: a mapreduce-based method for scalable string similarity joins. In: Proceedings of IEEE 30th International Conference on Data Engineering (ICDE), Chicago, 2014. 340-351.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Deng D, Li G L, Hao S, et al. Massjoin: a mapreduce-based method for scalable string similarity joins. In: Proceedings of IEEE 30th International Conference on Data Engineering (ICDE), Chicago, 2014. 340-351&
[70]
Minsik
C,
Daniel
B,
Rajesh
B, et al.
Paradis: an efficient parallel algorithm for in-place radix sort.
Proc VLDB Endowment,
2015, 8: 1518-1529
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Paradis: an efficient parallel algorithm for in-place radix sort&author=Minsik C&author=Daniel B&author=Rajesh B&publication_year=2015&journal=Proc VLDB Endowment&volume=8&pages=1518-1529
[71]
Shumo C, Magdalena B, Dan S. From theory to practice: efficient join query evaluation in a parallel database system. In: Proceedings of ACM SIGMOD International Conference on Management of Data, Melbourne, 2015. 63-78.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Shumo C, Magdalena B, Dan S. From theory to practice: efficient join query evaluation in a parallel database system. In: Proceedings of ACM SIGMOD International Conference on Management of Data, Melbourne, 2015. 63-78&
[72]
Jennie D, Olga P, Leilani B, et al. Skew-aware join optimization for array databases. In: Proceedings of ACM SIGMOD International Conference on Management of Data, Melbourne, 2015. 123-135.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Jennie D, Olga P, Leilani B, et al. Skew-aware join optimization for array databases. In: Proceedings of ACM SIGMOD International Conference on Management of Data, Melbourne, 2015. 123-135&
[73]
Orestis P, Rajkumar S, Kenneth A R. Track join: distributed joins with minimal network traffic. In: Proceedings of ACM SIGMOD International Conference on Management of Data, Snowbird, 2014. 1483-1494.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Orestis P, Rajkumar S, Kenneth A R. Track join: distributed joins with minimal network traffic. In: Proceedings of ACM SIGMOD International Conference on Management of Data, Snowbird, 2014. 1483-1494&
[74]
Amr
E,
Venkatesh
R,
Mohamed
A S, et al.
Optimization of common table expressions in mpp database systems.
Proc VLDB Endowment,
2015, 8: 1704-1715
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Optimization of common table expressions in mpp database systems&author=Amr E&author=Venkatesh R&author=Mohamed A S&publication_year=2015&journal=Proc VLDB Endowment&volume=8&pages=1704-1715
[75]
Han
X X,
Li
J Z,
Wang
J B, et al.
Tjje: an efficient algorithm for top-k join on massive data.
Inf Sci,
2013, 222: 362-383
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Tjje: an efficient algorithm for top-k join on massive data&author=Han X X&author=Li J Z&author=Wang J B&publication_year=2013&journal=Inf Sci&volume=222&pages=362-383
[76]
Han
X X,
Li
J Z,
Yang
D H, et al.
Efficient skyline computation on big data.
IEEE Trans Knowl Data Eng,
2013, 25: 2521-2535
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Efficient skyline computation on big data&author=Han X X&author=Li J Z&author=Yang D H&publication_year=2013&journal=IEEE Trans Knowl Data Eng&volume=25&pages=2521-2535
[77]
Khayyat
Z,
Lucia
W,
Singh
M, et al.
Lightning fast and space efficient inequality joins.
Proc VLDB Endowment,
2015, 8: 2074-2085
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Lightning fast and space efficient inequality joins&author=Khayyat Z&author=Lucia W&author=Singh M&publication_year=2015&journal=Proc VLDB Endowment&volume=8&pages=2074-2085
[78]
Fan W F, Wang X, Wu Y H. Querying big graphs within bounded resources. In: Proceedings of ACM SIGMOD International Conference on Management of Data, Snowbird, 2014. 301-312.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Fan W F, Wang X, Wu Y H. Querying big graphs within bounded resources. In: Proceedings of ACM SIGMOD International Conference on Management of Data, Snowbird, 2014. 301-312&
[79]
Fan W F, Geerts F, Cao Y, et al. Querying big data by accessing small data. In: Proceedings of the 34th ACM Symposium on Principles of Database Systems, Melbourne, 2015. 173-184.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Fan W F, Geerts F, Cao Y, et al. Querying big data by accessing small data. In: Proceedings of the 34th ACM Symposium on Principles of Database Systems, Melbourne, 2015. 173-184&
[80]
Fan W F, Geerts F, Libkin L. On scale independence for querying big data. In: Proceedings of the 33rd ACM Symposium on Principles of Database Systems, Snowbird, 2014. 51-62.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Fan W F, Geerts F, Libkin L. On scale independence for querying big data. In: Proceedings of the 33rd ACM Symposium on Principles of Database Systems, Snowbird, 2014. 51-62&
[81]
Cao Y, Fan W F, Huai J P, et al. Making pattern queries bounded in big graphs. In: Proceedings of the IEEE 31th International Conference on Data Engineering (ICDE), Seoul, 2015. 161-172.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Cao Y, Fan W F, Huai J P, et al. Making pattern queries bounded in big graphs. In: Proceedings of the IEEE 31th International Conference on Data Engineering (ICDE), Seoul, 2015. 161-172&
[82]
Fan
W F,
Wang
X,
Wu
Y H, et al.
Distributed graph simulation: impossibility and possibility.
Proc VLDB Endowment,
2014, 7: 1083-1094
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Distributed graph simulation: impossibility and possibility&author=Fan W F&author=Wang X&author=Wu Y H&publication_year=2014&journal=Proc VLDB Endowment&volume=7&pages=1083-1094
[83]
Fan
W F,
Wang
X,
Wu
Y H, et al.
Association rules with graph patterns.
Proc VLDB Endowment,
2015, 8: 1502-1513
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Association rules with graph patterns&author=Fan W F&author=Wang X&author=Wu Y H&publication_year=2015&journal=Proc VLDB Endowment&volume=8&pages=1502-1513
[84]
Huang J W, Abadi D J, Ren K. Scalable sparql querying of large rdf graphs. Proc VLDB Endowment, 2011, 4: 1123-1134.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Huang J W, Abadi D J, Ren K. Scalable sparql querying of large rdf graphs. Proc VLDB Endowment, 2011, 4: 1123-1134&
[85]
Zhang X F, Chen L, Tong Y X, et al. Eagre: towards scalable I/O efficient sparql query evaluation on the cloud. In: Proceedings of IEEE 29th International Conference on Data Engineering (ICDE), Brisbane, 2013. 565-576.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Zhang X F, Chen L, Tong Y X, et al. Eagre: towards scalable I/O efficient sparql query evaluation on the cloud. In: Proceedings of IEEE 29th International Conference on Data Engineering (ICDE), Brisbane, 2013. 565-576&
[86]
Zeng
K,
Yang
J C,
Wang
H X, et al.
A distributed graph engine for web scale rdf data.
Proc VLDB Endowment,
2013, 6: 265-276
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=A distributed graph engine for web scale rdf data&author=Zeng K&author=Yang J C&author=Wang H X&publication_year=2013&journal=Proc VLDB Endowment&volume=6&pages=265-276
[87]
Yuan
P P,
Liu
P,
Wu
B W, et al.
Triplebit: a fast and compact system for large scale rdf data.
Proc VLDB Endowment,
2013, 6: 517-528
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Triplebit: a fast and compact system for large scale rdf data&author=Yuan P P&author=Liu P&author=Wu B W&publication_year=2013&journal=Proc VLDB Endowment&volume=6&pages=517-528
[88]
Zheng
W G,
Zou
L,
Feng
Y S, et al.
Efficient simrank-based similarity join over large graphs.
Proc VLDB Endowment,
2013, 6: 493-504
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Efficient simrank-based similarity join over large graphs&author=Zheng W G&author=Zou L&author=Feng Y S&publication_year=2013&journal=Proc VLDB Endowment&volume=6&pages=493-504
[89]
Mondal J, Deshpande A. Managing large dynamic graphs efficiently. In: Proceedings of ACM SIGMOD International Conference on Management of Data, Scottsdale, 2012. 145-156.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Mondal J, Deshpande A. Managing large dynamic graphs efficiently. In: Proceedings of ACM SIGMOD International Conference on Management of Data, Scottsdale, 2012. 145-156&
[90]
Yang S Q, Yan X F, Zong B, et al. Towards effective partition management for large graphs. In: Proceedings of ACM SIGMOD International Conference on Management of Data, Scottsdale, 2012. 517-528.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Yang S Q, Yan X F, Zong B, et al. Towards effective partition management for large graphs. In: Proceedings of ACM SIGMOD International Conference on Management of Data, Scottsdale, 2012. 517-528&
[91]
Zhao
P X,
Aggarwal
C C,
Wang
M.
Gsketch: on query estimation in graph streams.
Proc VLDB Endowment,
2011, 5: 193-204
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Gsketch: on query estimation in graph streams&author=Zhao P X&author=Aggarwal C C&author=Wang M&publication_year=2011&journal=Proc VLDB Endowment&volume=5&pages=193-204
[92]
Shao Y X, Cui B, Chen L, et al. Parallel subgraph listing in a large-scale graph. In: Proceedings of ACM SIGMOD International Conference on Management of Data, Snowbird, 2014. 625-636.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Shao Y X, Cui B, Chen L, et al. Parallel subgraph listing in a large-scale graph. In: Proceedings of ACM SIGMOD International Conference on Management of Data, Snowbird, 2014. 625-636&
[93]
Li
Z G,
Fang
Y X,
Liu
Q, et al.
Walking in the cloud: parallel simrank at scale.
Proc VLDB Endowment,
2015, 9: 24-35
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Walking in the cloud: parallel simrank at scale&author=Li Z G&author=Fang Y X&author=Liu Q&publication_year=2015&journal=Proc VLDB Endowment&volume=9&pages=24-35
[94]
Zhu
Y Y,
Yu
J X,
Qin
L.
Leveraging graph dimensions in online graph search.
Proc VLDB Endowment,
2014, 8: 85-96
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Leveraging graph dimensions in online graph search&author=Zhu Y Y&author=Yu J X&author=Qin L&publication_year=2014&journal=Proc VLDB Endowment&volume=8&pages=85-96
[95]
Qi
Z C,
Xiao
Y H,
Shao
B, et al.
Toward a distance oracle for billion-node graphs.
Proc VLDB Endowment,
2013, 7: 61-72
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Toward a distance oracle for billion-node graphs&author=Qi Z C&author=Xiao Y H&author=Shao B&publication_year=2013&journal=Proc VLDB Endowment&volume=7&pages=61-72
[96]
Qin L, Yu J X, Chang L J, et al. Scalable big graph processing in mapreduce. In: Proceedings of ACM SIGMOD International Conference on Management of Data, Snowbird, 2014. 827-838.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Qin L, Yu J X, Chang L J, et al. Scalable big graph processing in mapreduce. In: Proceedings of ACM SIGMOD International Conference on Management of Data, Snowbird, 2014. 827-838&
[97]
Levin R, Kanza Y. Stratified-sampling over social networks using mapreduce. In: Proceedings of ACM SIGMOD International Conference on Management of Data, Snowbird, 2014. 863-874.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Levin R, Kanza Y. Stratified-sampling over social networks using mapreduce. In: Proceedings of ACM SIGMOD International Conference on Management of Data, Snowbird, 2014. 863-874&
[98]
Zhu A D, Lin W Q, Wang S B, et al. Reachability queries on large dynamic graphs. In: Proceedings of ACM SIGMOD International Conference on Management of Data, Snowbird, 2014. 1323-1334.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Zhu A D, Lin W Q, Wang S B, et al. Reachability queries on large dynamic graphs. In: Proceedings of ACM SIGMOD International Conference on Management of Data, Snowbird, 2014. 1323-1334&
[99]
Gao
J,
Jin
R M,
Zhou
J S, et al.
Relational approach for shortest path discovery over large graphs.
Proc VLDB Endowment,
2011, 5: 358-369
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Relational approach for shortest path discovery over large graphs&author=Gao J&author=Jin R M&author=Zhou J S&publication_year=2011&journal=Proc VLDB Endowment&volume=5&pages=358-369
[100]
Sun
Z,
Wang
H Z,
Wang
H X, et al.
Efficient subgraph matching on billion node graphs.
Proc VLDB Endowment,
2012, 5: 788-799
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Efficient subgraph matching on billion node graphs&author=Sun Z&author=Wang H Z&author=Wang H X&publication_year=2012&journal=Proc VLDB Endowment&volume=5&pages=788-799
[101]
Jin R M, Ruan N, Dey S, et al. Scarab: scaling reachability computation on large graphs. In: Proceedings of ACM SIGMOD International Conference on Management of Data, Scottsdale, 2012. 169-180.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Jin R M, Ruan N, Dey S, et al. Scarab: scaling reachability computation on large graphs. In: Proceedings of ACM SIGMOD International Conference on Management of Data, Scottsdale, 2012. 169-180&
[102]
Chen H Q, Ku W, Wang H X, et al. Linkprobe: probabilistic inference on large-scale social networks. In: Proceedings of IEEE 29th International Conference on Data Engineering (ICDE), Brisbane, 2013. 290-301.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Chen H Q, Ku W, Wang H X, et al. Linkprobe: probabilistic inference on large-scale social networks. In: Proceedings of IEEE 29th International Conference on Data Engineering (ICDE), Brisbane, 2013. 290-301&
[103]
Xiang J, Guo C, Aboulnaga A. Scalable maximum clique computation using mapreduce. In: Proceedings of IEEE 29th International Conference on Data Engineering (ICDE), Brisbane, 2013. 74-85.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Xiang J, Guo C, Aboulnaga A. Scalable maximum clique computation using mapreduce. In: Proceedings of IEEE 29th International Conference on Data Engineering (ICDE), Brisbane, 2013. 74-85&
[104]
Zhang
Z W,
Yu
J X,
Qin
L, et al.
I/O efficient: computing sccs in massive graphs.
VLDB J,
2015, 24: 245-270
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=I/O efficient: computing sccs in massive graphs&author=Zhang Z W&author=Yu J X&author=Qin L&publication_year=2015&journal=VLDB J&volume=24&pages=245-270
[105]
Shun J, Tangwongsan K. Multicore triangle computations without tuning. In: Proceedings of IEEE 31st International Conference on Data Engineering (ICDE), Seoul, 2015. 149-160.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Shun J, Tangwongsan K. Multicore triangle computations without tuning. In: Proceedings of IEEE 31st International Conference on Data Engineering (ICDE), Seoul, 2015. 149-160&
[106]
Chitnis L, Das S A, Machanavajjhala A, et al. Finding connected components in map-reduce in logarithmic rounds. In: Proceedings of IEEE 29th International Conference on Data Engineering (ICDE), Brisbane, 2013. 50-61.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Chitnis L, Das S A, Machanavajjhala A, et al. Finding connected components in map-reduce in logarithmic rounds. In: Proceedings of IEEE 29th International Conference on Data Engineering (ICDE), Brisbane, 2013. 50-61&
[107]
Beedkar K, Gemulla R. Lash: large-scale sequence mining with hierarchies. In: Proceedings of ACM SIGMOD International Conference on Management of Data, Melbourne, 2015. 491-503.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Beedkar K, Gemulla R. Lash: large-scale sequence mining with hierarchies. In: Proceedings of ACM SIGMOD International Conference on Management of Data, Melbourne, 2015. 491-503&
[108]
Buehrer G, De O R L, Fuhry D, et al. Towards a parameter-free and parallel itemset mining algorithm in linearithmic time. In: Proceedings of IEEE 31st International Conference on Data Engineering (ICDE), Seoul, 2015. 1071-1082.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Buehrer G, De O R L, Fuhry D, et al. Towards a parameter-free and parallel itemset mining algorithm in linearithmic time. In: Proceedings of IEEE 31st International Conference on Data Engineering (ICDE), Seoul, 2015. 1071-1082&
[109]
Schelter S, Soto J, Markl V, et al. Efficient sample generation for scalable meta learning. In: Proceedings of IEEE 31st International Conference on Data Engineering (ICDE), Seoul, 2015. 1191-1202.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Schelter S, Soto J, Markl V, et al. Efficient sample generation for scalable meta learning. In: Proceedings of IEEE 31st International Conference on Data Engineering (ICDE), Seoul, 2015. 1191-1202&
[110]
Riondato M, Debrabant J A, Fonseca R, et al. Parma: a parallel randomized algorithm for approximate association rules mining in mapreduce. In: Proceedings of the 21st ACM International Conference on Information and Knowledge Management (CIKM), Maui, 2012. 85-94.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Riondato M, Debrabant J A, Fonseca R, et al. Parma: a parallel randomized algorithm for approximate association rules mining in mapreduce. In: Proceedings of the 21st ACM International Conference on Information and Knowledge Management (CIKM), Maui, 2012. 85-94&
[111]
Riondato M, Upfal E. Mining frequent itemsets through progressive sampling with rademacher averages. In: Proceedings of the 21st ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Sydney, 2015. 1005-1014.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Riondato M, Upfal E. Mining frequent itemsets through progressive sampling with rademacher averages. In: Proceedings of the 21st ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Sydney, 2015. 1005-1014&
[112]
Wang P H, Lui J C S, Towsley D. Minfer: inferring motif statistics from sampled edges. In: Proceedings of IEEE 32nd International Conference on Data Engineering (ICDE), Helsinki, 2016. 1050-1061.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Wang P H, Lui J C S, Towsley D. Minfer: inferring motif statistics from sampled edges. In: Proceedings of IEEE 32nd International Conference on Data Engineering (ICDE), Helsinki, 2016. 1050-1061&
[113]
Liang Y Y, Xie B, Woodruff D, et al. Communication efficient distributed kernel principal component analysis. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, 2016, in press.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Liang Y Y, Xie B, Woodruff D, et al. Communication efficient distributed kernel principal component analysis. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, 2016, in press&
[114]
Zhang A, Gu Q Q. Accelerated stochastic block coordinate descent with optimal sampling. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, 2016, in press.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Zhang A, Gu Q Q. Accelerated stochastic block coordinate descent with optimal sampling. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, 2016, in press&
[115]
Yang Y, Chen J F, Zhu J. Distributing the stochastic gradient sampler for large-scale lda. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, 2016, in press.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Yang Y, Chen J F, Zhu J. Distributing the stochastic gradient sampler for large-scale lda. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, 2016, in press&
[116]
Kang U, Chau D H, Faloutsos C. Mining large graphs: algorithms, inference, and discoveries. In: Proceedings of IEEE 27th International Conference on Data Engineering (ICDE), Hannover, 2011. 243-254.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Kang U, Chau D H, Faloutsos C. Mining large graphs: algorithms, inference, and discoveries. In: Proceedings of IEEE 27th International Conference on Data Engineering (ICDE), Hannover, 2011. 243-254&
[117]
Morales
G D F,
Gionis
A,
Sozio
M.
Social content matching in mapreduce.
Proc VLDB Endowment,
2011, 4: 460-469
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Social content matching in mapreduce&author=Morales G D F&author=Gionis A&author=Sozio M&publication_year=2011&journal=Proc VLDB Endowment&volume=4&pages=460-469
[118]
Bahman B, Kaushik C, Dong X. Fast personalized pagerank on mapreduce. In: Proceedings of ACM SIGMOD International Conference on Management of Data, Athens, 2011. 973-984.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Bahman B, Kaushik C, Dong X. Fast personalized pagerank on mapreduce. In: Proceedings of ACM SIGMOD International Conference on Management of Data, Athens, 2011. 973-984&
[119]
Chu
L Y,
Wang
S H,
Liu
S Y, et al.
Alid: scalable dominant cluster detection.
Proc VLDB Endowment,
2015, 8: 826-837
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Alid: scalable dominant cluster detection&author=Chu L Y&author=Wang S H&author=Liu S Y&publication_year=2015&journal=Proc VLDB Endowment&volume=8&pages=826-837
[120]
Lin W Q, Xiao X K, Ghinita G. Large-scale frequent subgraph mining in mapreduce. In: Proceedings of IEEE 30th International Conference on Data Engineering (ICDE), Chicago, 2014. 844-855.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Lin W Q, Xiao X K, Ghinita G. Large-scale frequent subgraph mining in mapreduce. In: Proceedings of IEEE 30th International Conference on Data Engineering (ICDE), Chicago, 2014. 844-855&
[121]
Alvanaki F, Michel S. Tracking set correlations at large scale. In: Proceedings of ACM SIGMOD International Conference on Management of Data, Snowbird, 2014. 1507-1518.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Alvanaki F, Michel S. Tracking set correlations at large scale. In: Proceedings of ACM SIGMOD International Conference on Management of Data, Snowbird, 2014. 1507-1518&
[122]
Li F, Ozsu M T, Chen G, et al. R-store: a scalable distributed system for supporting real-time analytics. In: Proceedings of IEEE 30th International Conference on Data Engineering (ICDE), Chicago, 2014. 40-51.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Li F, Ozsu M T, Chen G, et al. R-store: a scalable distributed system for supporting real-time analytics. In: Proceedings of IEEE 30th International Conference on Data Engineering (ICDE), Chicago, 2014. 40-51&
[123]
Scholer F, Williams H E, Yiannis J, et al. Compression of inverted indexes for fast query evaluation. In: Proceedings of ACM SIGIR International Conference on Research and Development in Information Retrieval, Tampere, 2002. 222-229.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Scholer F, Williams H E, Yiannis J, et al. Compression of inverted indexes for fast query evaluation. In: Proceedings of ACM SIGIR International Conference on Research and Development in Information Retrieval, Tampere, 2002. 222-229&
[124]
Sihem A, Theodore J. Optimizing queries on compressed bitmaps. In: Proceedings of the 26th International Conference on Very Large Data Bases, Cairo, 2010. 329-338.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Sihem A, Theodore J. Optimizing queries on compressed bitmaps. In: Proceedings of the 26th International Conference on Very Large Data Bases, Cairo, 2010. 329-338&
[125]
Yan Y, Zhang J X, Huang B J, et al. Distributed outlier detection using compressive sensing. In: Proceedings of ACM SIGMOD International Conference on Management of Data, Melbourne, 2015. 3-16.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Yan Y, Zhang J X, Huang B J, et al. Distributed outlier detection using compressive sensing. In: Proceedings of ACM SIGMOD International Conference on Management of Data, Melbourne, 2015. 3-16&
[126]
Chang L J, Yu J X, Qin L, et al. Efficiently computing k-edge connected components via graph decomposition. In: Proceedings of ACM SIGMOD International Conference on Management of Data, New York, 2013. 205-216.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Chang L J, Yu J X, Qin L, et al. Efficiently computing k-edge connected components via graph decomposition. In: Proceedings of ACM SIGMOD International Conference on Management of Data, New York, 2013. 205-216&
[127]
Song
C Y,
Ge
T J,
Chen
C, et al.
Event pattern matching over graph streams.
Proc VLDB Endowment,
2014, 8: 413-424
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Event pattern matching over graph streams&author=Song C Y&author=Ge T J&author=Chen C&publication_year=2014&journal=Proc VLDB Endowment&volume=8&pages=413-424
[128]
Shiokawa
H,
Fujiwara
Y,
Onizuka
M.
Scan++: efficient algorithm for finding clusters, hubs and outliers on large-scale graphs.
Proc VLDB Endowment,
2015, 8: 1178-1189
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Scan++: efficient algorithm for finding clusters, hubs and outliers on large-scale graphs&author=Shiokawa H&author=Fujiwara Y&author=Onizuka M&publication_year=2015&journal=Proc VLDB Endowment&volume=8&pages=1178-1189
[129]
Liu
Y,
Lu
J H,
Yang
H, et al.
Towards maximum independent sets on massive graphs.
Proc VLDB Endowment,
2015, 8: 2122-2133
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Towards maximum independent sets on massive graphs&author=Liu Y&author=Lu J H&author=Yang H&publication_year=2015&journal=Proc VLDB Endowment&volume=8&pages=2122-2133
[130]
Min F, Narayanan S, Hector G M, et al. Computing iceberg queries efficiently. In: Proceedings of the 24th International Conference on Very Large Data Bases, New York, 1998. 299-310.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Min F, Narayanan S, Hector G M, et al. Computing iceberg queries efficiently. In: Proceedings of the 24th International Conference on Very Large Data Bases, New York, 1998. 299-310&
[131]
Li N, Guan Z Y, Ren L J, et al. Giceberg: towards iceberg analysis in large graphs. In: Proceedings of IEEE 29th International Conference on Data Engineering (ICDE), Brisbane, 2013. 1021-1032.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Li N, Guan Z Y, Ren L J, et al. Giceberg: towards iceberg analysis in large graphs. In: Proceedings of IEEE 29th International Conference on Data Engineering (ICDE), Brisbane, 2013. 1021-1032&
[132]
Cui W Y, Xiao Y H, Wang H X, et al. Local search of communities in large graphs. In: Proceedings of ACM SIGMOD International Conference on Management of Data, Snowbird, 2014. 991-1002.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Cui W Y, Xiao Y H, Wang H X, et al. Local search of communities in large graphs. In: Proceedings of ACM SIGMOD International Conference on Management of Data, Snowbird, 2014. 991-1002&
[133]
Huang X, Cheng H, Qin L, et al. Querying k-truss community in large and dynamic graphs. In: Proceedings of ACM SIGMOD International Conference on Management of Data, Snowbird, 2014. 1311-1322.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Huang X, Cheng H, Qin L, et al. Querying k-truss community in large and dynamic graphs. In: Proceedings of ACM SIGMOD International Conference on Management of Data, Snowbird, 2014. 1311-1322&
[134]
Elgamal T, Yabandeh M, Aboulnaga A, et al. Spca: scalable principal component analysis for big data on distributed platforms. In: Proceedings of ACM SIGMOD International Conference on Management of Data, Melbourne, 2015. 79-91.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Elgamal T, Yabandeh M, Aboulnaga A, et al. Spca: scalable principal component analysis for big data on distributed platforms. In: Proceedings of ACM SIGMOD International Conference on Management of Data, Melbourne, 2015. 79-91&
[135]
Yu L L, Shao Y X, Cui B. Exploiting matrix dependency for efficient distributed matrix computation. In: Proceedings of ACM SIGMOD International Conference on Management of Data, Melbourne, 2015. 93-105.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Yu L L, Shao Y X, Cui B. Exploiting matrix dependency for efficient distributed matrix computation. In: Proceedings of ACM SIGMOD International Conference on Management of Data, Melbourne, 2015. 93-105&
[136]
Ghashami
M,
Phillips
J M,
Li
F F.
Continuous matrix approximation on distributed data.
Proc VLDB Endowment,
2014, 7: 809-820
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Continuous matrix approximation on distributed data&author=Ghashami M&author=Phillips J M&author=Li F F&publication_year=2014&journal=Proc VLDB Endowment&volume=7&pages=809-820
[137]
Papapetrou O, Garofalakis M. Continuous fragmented skylines over distributed streams. In: Proceedings of IEEE 30th International Conference on Data Engineering (ICDE), Chicago, 2014. 124-135.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Papapetrou O, Garofalakis M. Continuous fragmented skylines over distributed streams. In: Proceedings of IEEE 30th International Conference on Data Engineering (ICDE), Chicago, 2014. 124-135&
[138]
Cao L, Yang D, Wang Q Y, et al. Scalable distance-based outlier detection over high-volume data streams. In: Proceedings of IEEE 30th International Conference on Data Engineering (ICDE), Chicago, 2014. 76-87.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Cao L, Yang D, Wang Q Y, et al. Scalable distance-based outlier detection over high-volume data streams. In: Proceedings of IEEE 30th International Conference on Data Engineering (ICDE), Chicago, 2014. 76-87&
[139]
Aggarwal C C, Yu P S. On historical diagnosis of sensor streams. In: Proceedings of IEEE 31st International Conference on Data Engineering (ICDE), Seoul, 2015. 185-194.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Aggarwal C C, Yu P S. On historical diagnosis of sensor streams. In: Proceedings of IEEE 31st International Conference on Data Engineering (ICDE), Seoul, 2015. 185-194&
[140]
Sadoghi M, Jacobsen H. Adaptive parallel compressed event matching. In: Proceedings of IEEE 30th International Conference on Data Engineering (ICDE), Chicago, 2014. 364-375.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Sadoghi M, Jacobsen H. Adaptive parallel compressed event matching. In: Proceedings of IEEE 30th International Conference on Data Engineering (ICDE), Chicago, 2014. 364-375&
[141]
Reynold S X, Josh R, Matei Z, et al. Shark: {SQL} and rich analytics at scale. In: Proceedings of ACM SIGMOD International Conference on Management of Data, New York, 2013. 13-24.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Reynold S X, Josh R, Matei Z, et al. Shark: {SQL} and rich analytics at scale. In: Proceedings of ACM SIGMOD International Conference on Management of Data, New York, 2013. 13-24&
[142]
Tsytsarau M, Amer-yahia S, Palpanas T. Efficient sentiment correlation for large-scale demographics. In: Proceedings of ACM SIGMOD International Conference on Management of Data, New York, 2013. 253-264.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Tsytsarau M, Amer-yahia S, Palpanas T. Efficient sentiment correlation for large-scale demographics. In: Proceedings of ACM SIGMOD International Conference on Management of Data, New York, 2013. 253-264&
[143]
Gatterbauer W, Nnemann S, Koutra D, et al. Linearized and single-pass belief propagation. Proc VLDB Endowment, 2014, 8: 581-592.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Gatterbauer W, Nnemann S, Koutra D, et al. Linearized and single-pass belief propagation. Proc VLDB Endowment, 2014, 8: 581-592&
[144]
Park
Y,
Min
J K,
Shim
K.
Parallel computation of skyline and reverse skyline queries using mapreduce.
Proc VLDB Endowment,
2013, 6: 2002-2013
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Parallel computation of skyline and reverse skyline queries using mapreduce&author=Park Y&author=Min J K&author=Shim K&publication_year=2013&journal=Proc VLDB Endowment&volume=6&pages=2002-2013