logo

SCIENTIA SINICA Informationis, Volume 46 , Issue 8 : 1156-1174(2016) https://doi.org/10.1360/N112016-00059

Optoelectronic devices and integration technologies

More info
  • ReceivedMar 23, 2016
  • AcceptedMay 26, 2016
  • PublishedAug 5, 2016

Abstract


Funded by

国家自然科学基金(61321063)

国家自然科学基金(61090390)

国家自然科学基金(61522509)

国家自然科学基金(61535012)

国家高技术研究发展计划(2011AA010303)

国家高技术研究发展计划(2015AA017102)


References

[1] Li M, Chen X, Su Y, et al. Photonic integration circuits in China. IEEE J Quant Electron, 2016, 52: 0601017. Google Scholar

[2] Li M, Zhu N H. Microwave photonics shines in China. IEEE Photo Soci Newsl, 2016, 30: 4-14. Google Scholar

[3] Bougioukos M, Kouloumentas C, Spyropoulou M, et al. Multi-format all-optical processing based on a large-scale, hybridly integrated photonic circuit. Opt Express, 2011, 19: 11479-11489 CrossRef Google Scholar

[4] Bougioukos M, Richter T, Kouloumentas C, et al. Phase-incoherent DQPSK wavelength conversion using a photonic integrated circuit. IEEE Photon Tech Lett, 2011, 23: 1649-1651 CrossRef Google Scholar

[5] Cemlyn B R, Labukhin D, Henning I D, et al. Dynamic transitions in a photonic integrated circuit. IEEE J Quant Electron, 2012, 48: 261-268 CrossRef Google Scholar

[6] Chen L, Sohdi A, Bowers J E, et al. Electronic and photonic integrated circuits for fast data center optical circuit switches. IEEE Commun Mag, 2013, 51: 53-59. Google Scholar

[7] Dal Bosco A K, Kanno K, Uchida A, et al. Cycles of self-pulsations in a photonic integrated circuit. Phys Rev E, 2015, 92: 062905-59 CrossRef Google Scholar

[8] Ding Y H, Ou H Y, Xu J, et al. Silicon photonic integrated circuit mode multiplexer. IEEE Photon Tech Lett, 2013, 25: 648-651 CrossRef Google Scholar

[9] Englund D R. Towards scalable networks of solid-state quantum memories in a photonic integrated circuit (presentation recording). In: Proceedings of SPIE Active Photonic Materials VII, San Diego, 2015. 9546. Google Scholar

[10] Evans P, Fisher M, Malendevich R, et al. 1.12 Tb/s superchannel coherent PM-QPSK InP transmitter photonic integrated circuit (PIC). Opt Express, 2011, 19: 154-158. Google Scholar

[11] Evans P, Fisher M, Malendevich R, et al. Multi-channel coherent PM-QPSK InP transmitter photonic integrated circuit (PIC) operating at 112 Gb/s per wavelength. In: Proceedings of Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, Los Angeles, 2011. 1-3. Google Scholar

[12] Fandino J S, Domenech J D, Munoz P, et al. Design and experimental characterization of an InP photonic integrated circuit working as a receiver for frequency-modulated direct-detection microwave photonic links. In: Proceedings of SPIE Integrated Optics: Devices, Materials, and Technologies XVII, San Francisco, 2013. 8627: 1-8. Google Scholar

[13] Germer S, Cherkouk C, Rebohle L, et al. Si-based light emitter in an integrated photonic circuit for smart biosensor applications. In: Proceedings of SPIE Integrated Photonics: Materials, Devices, and Applications II, Grenoble, 2013. 8767: 1-13. Google Scholar

[14] Guan B B, Scott R P, Qin C, et al. Free-space coherent optical communication with orbital angular, momentum multiplexing/demultiplexing using a hybrid 3D photonic integrated circuit. Opt Express, 2014, 22: 145-156 CrossRef Google Scholar

[15] Guzzon R S, Norberg E J, Coldren L A. Spurious-free dynamic range in photonic integrated circuit filters with semiconductor optical amplifiers. IEEE J Quant Electron, 2012, 48: 269-278 CrossRef Google Scholar

[16] Haney M W. How will photonic integrated circuit technology develop? In: Proceedings of SPIE Silicon Photonics VIII, San Francisco, 2013. 8629: 1-6. Google Scholar

[17] Hasan M, Guemri R, Maldonado-Basilio R, et al. Theoretical analysis and modeling of a photonic integrated circuit for frequency 8-tupled and 24-tupled millimeter wave signal generation. Opt Lett, 2014, 39: 6950-6953 CrossRef Google Scholar

[18] Hasan M, Guemri R, Maldonado-Basilio R, et al. Theoretical analysis and modeling of a photonic integrated circuit for frequency 8-tupled and 24-tupled millimeter wave signal generation. Opt Lett, 2015, 40: 5710-5710 CrossRef Google Scholar

[19] Hasan M, Hall T. Cascade photonic integrated circuit architecture for electro-optic in-phase quadrature/single sideband modulation or frequency conversion. Opt Lett, 2015, 40: 5038-5041 CrossRef Google Scholar

[20] Hasan M, Maldonado-Basilio R, Hall T J. Dual-function photonic integrated circuit for frequency octo-tupling or single-side-band modulation. Opt Lett, 2015, 40: 2501-2504 CrossRef Google Scholar

[21] Heck M J R, Bauters J F, Davenport M L, et al. Hybrid silicon photonic integrated circuit technology. IEEE J Sel Top Quant, 2013, 19: 6100117-2504 CrossRef Google Scholar

[22] Heck M J R, Davenport M L, Srinivasan S, et al. Optimization of the hybrid silicon photonic integrated circuit platform. In: Proceedings of SPIE Novel In-Plane Semiconductor Lasers XII, San Francisco, 2013. 8640: 1-10. Google Scholar

[23] Huang W P, Han L, Mu J W. A rigorous circuit model for simulation of large-scale photonic integrated circuits. IEEE Photon J, 2012, 4: 1622-1638 CrossRef Google Scholar

[24] Kazmierski C. Electro-absorption-based fast photonic integrated circuit sources for next network capacity scaling. J Opt Commun Netw, 2012, 4: 8-16 CrossRef Google Scholar

[25] Kervella G, van Dijk F, Pillet G, et al. Optoelectronic cross-injection locking of a dual-wavelength photonic integrated circuit for low-phase-noise millimeter-wave generation. Opt Lett, 2015, 40: 3655-3658 CrossRef Google Scholar

[26] Liow T Y, Ang K W, Fang Q, et al. Silicon photonics technologies for monolithic electronic-photonic integrated circuit applications. In: Proceedings of the 10th IEEE International Conference on Solid-State and Integrated Circuit Technology, Shannghai, 2010. 29-32. Google Scholar

[27] Mao D P, Qiao X, Dong L. Design of nano-opto-mechanical reconfigurable photonic integrated circuit. J Lightw Tech, 2013, 31: 1660-1669 CrossRef Google Scholar

[28] Nagarajan R, Lambert D, Kato M, et al. Five-channel, 114 Gbit/s per channel, dual carrier, dual polarisation, coherent QPSK, monolithic InP receiver photonic integrated circuit. Electron Lett, 2011, 47: 555-556 CrossRef Google Scholar

[29] Nagarajan R, Rahn J, Kato M, et al. 10 channel, 45.6 Gb/s per channel, polarization-multiplexed DQPSK, InP receiver photonic integrated circuit. J Lightw Tech, 2011, 29: 386-395. Google Scholar

[30] Ruocco A, Fiers M, Vanslembrouck M, et al. Multi-parameter extraction from SOI photonic integrated circuits using circuit simulation and evolutionary algorithms. In: Proceedings of SPIE Smart Photonic and Optoelectronic Integrated Circuits XVII, San Francisco, 2015. 9366: 1-9. Google Scholar

[31] Shiue R J, Gao Y D, Wang Y F, et al. High-responsivity Graphene-Boron nitride photodetector and autocorrelator in a silicon photonic integrated circuit. Nano Lett, 2015, 15: 7288-7293 CrossRef Google Scholar

[32] Snyder B, Corbett B, O'brien P. Hybrid Integration of the wavelength-tunable laser with a silicon photonic integrated circuit. J Lightw Tech, 2013, 31: 3934-3942 CrossRef Google Scholar

[33] Spyropoulou M, Bougioukos M, Giannoulis G, et al. Large-scale photonic integrated circuit for multi-format regeneration and wavelength conversion. In: Proceedings of Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, Los Angeles, 2011. 1-3. Google Scholar

[34] Stanton E J, Heck M J R, Bovington J, et al. Multi-octave spectral beam combiner on ultra-broadband photonic integrated circuit platform. Opt Express, 2015, 23: 11272-11283 CrossRef Google Scholar

[35] Stopinski S, Malinowski M, Piramidowicz R, et al. Data readout system utilizing photonic integrated circuit. Nucl Instrum Meth A, 2013, 725: 183-186 CrossRef Google Scholar

[36] Summers J, Vallaitis T, Evans P, et al. Monolithic InP-based coherent transmitter photonic integrated circuit with 2.25 Tbit/s capacity. Electron Lett, 2014, 50: 1150-1151. Google Scholar

[37] Theurer M, Gobel T, Stanze D, et al. Photonic-integrated circuit for continuous-wave THz generation. Opt Lett, 2013, 38: 3724-3726 CrossRef Google Scholar

[38] van Acoleyen K, Ryckeboer E, Bogaerts W, et al. Efficient light collection and direction-of-arrival estimation using a photonic integrated circuit. IEEE Photon Tech Lett, 2012, 24: 933-935 CrossRef Google Scholar

[39] van Dijk F, Lamponi M, Chtioui M, et al. Photonic integrated circuit on InP for millimeter wave generation. In: Proceedings of SPIE Integrated Optics: Devices, Materials, and Technologies XVIII, San Francisco, 2014. 8988: 1-6. Google Scholar

[40] Wang Z, Lee H C, Vermeulen D, et al. Silicon photonic integrated circuit swept-source optical coherence tomography receiver with dual polarization, dual balanced, in-phase and quadrature detection. Biomed Opt Express, 2015, 6: 2562-2574 CrossRef Google Scholar

[41] Xu K, Cheng Z Z, Wong C Y, et al. UWB monocycle pulse generation based on colourless silicon photonic integrated circuit. Electron Lett, 2013, 49: 1291-1292 CrossRef Google Scholar

[42] Yi Y J, Wang H R, Liu Y, et al. Multilayer hybrid waveguide amplifier for three-dimension photonic integrated circuit. IEEE Photon Tech Lett, 2015, 27: 2411-2413 CrossRef Google Scholar

[43] Zhong Q H, Tian Z B, Veerasubramanian V, et al. Thermally controlled coupling of a rolled-up microtube integrated with a waveguide on a silicon electronic-photonic integrated circuit. Opt Lett, 2014, 39: 2699-2702 CrossRef Google Scholar

[44] Alekseyev L, Narimanov E, Khurgin J. Super-resolution imaging via spatiotemporal frequency shifting and coherent detection. Opt Express, 2011, 19: 22350-22357 CrossRef Google Scholar

[45] Ashida Y, Ueda M. Precise multi-emitter localization method for fast super-resolution imaging. Opt Lett, 2016, 41: 72-75 CrossRef Google Scholar

[46] Babcock H P, Moffitt J R, Cao Y L, et al. Fast compressed sensing analysis for super-resolution imaging using L1-homotopy. Opt Express, 2013, 21: 28583-28596 CrossRef Google Scholar

[47] Beliveau B J, Boettiger A N, Avendano M S, et al. Single-molecule super-resolution imaging of chromosomes and in situ haplotype visualization using Oligopaint FISH probes. Nat Commun, 2015, 6: 7147-28596 CrossRef Google Scholar

[48] Carles G, Downing J, Harvey A R. Super-resolution imaging using a camera array. Opt Lett, 2014, 39: 1889-1892 CrossRef Google Scholar

[49] Conkey D B, Caravaca-Aguirre A M, Dove J D, et al. Super-resolution photoacoustic imaging through a scattering wall. Nat Commun, 2015, 6: 7902-1892 CrossRef Google Scholar

[50] Darafsheh A, Guardiola C, Palovcak A, et al. Optical super-resolution imaging by high-index microspheres embedded in elastomers. Opt Lett, 2015, 40: 5-8 CrossRef Google Scholar

[51] Darafsheh A, Limberopoulos N I, Derov J S, et al. Advantages of microsphere-assisted super-resolution imaging technique over solid immersion lens and confocal microscopies. Appl Phys Lett, 2014, 104: 061117-8 CrossRef Google Scholar

[52] Dempsey G T, Vaughan J C, Chen K H, et al. Evaluation of fluorophores for optimal performance in localization-based super-resolution imaging. Nat Methods, 2011, 8: 1027-1036 CrossRef Google Scholar

[53] Dong S Y, Horstmeyer R, Shiradkar R, et al. Aperture-scanning Fourier ptychography for 3D refocusing and super-resolution macroscopic imaging. Opt Express, 2014, 22: 13586-13599 CrossRef Google Scholar

[54] Du Y J, Zhang H, Zhao M Y, et al. Faster super-resolution imaging of high density molecules via a cascading algorithm based on compressed sensing. Opt Express, 2015, 23: 18563-18576 CrossRef Google Scholar

[55] Duan Y B, Barbastathis G, Zhang B L. Classical imaging theory of a microlens with super-resolution. Opt Lett, 2013, 38: 2988-2990 CrossRef Google Scholar

[56] Geissbuehler S, Sharipov A, Godinat A, et al. Live-cell multiplane three-dimensional super-resolution optical fluctuation imaging. Nat Commun, 2014, 5: 5830-2990 CrossRef Google Scholar

[57] Hao X, Liu X, Kuang C F, et al. Far-field super-resolution imaging using near-field illumination by micro-fiber. Appl Phys Lett, 2013, 102: 013104-2990 CrossRef Google Scholar

[58] Hardie R C, Barnard K J, Ordonez R. Fast super-resolution with affine motion using an adaptive Wiener filter and its application to airborne imaging. Opt Express, 2011, 19: 26208-26231 CrossRef Google Scholar

[59] Izeddin I, El Beheiry M, Andilla J, et al. PSF shaping using adaptive optics for three-dimensional single-molecule super-resolution imaging and tracking. Opt Express, 2012, 20: 4957-4967 CrossRef Google Scholar

[60] Jia S, Vaughan J C, Zhuang X W. Isotropic three-dimensional super-resolution imaging with a self-bending point spread function. Nat Photon, 2014, 8: 302-306 CrossRef Google Scholar

[61] Kozawa Y, Kusama Y, Sato S, et al. Super-resolution imaging of lateral distribution for the blue-light emission of an InGaN single-quantum-well structure utilizing the stimulated emission depletion effect. Opt Express, 2014, 22: 22575-22582 CrossRef Google Scholar

[62] Li L, Guo W, Yan Y Z, et al. Label-free super-resolution imaging of adenoviruses by submerged microsphere optical nanoscopy. Light-Sci Appl, 2013, 2: e104-22582 CrossRef Google Scholar

[63] Lu D L, Liu Z W. Hyperlenses and metalenses for far-field super-resolution imaging. Nat Commun, 2012, 3: 1205. Google Scholar

[64] Pan D, Hu Z, Qiu F W, et al. A general strategy for developing cell-permeable photo-modulatable organic fluorescent probes for live-cell super-resolution imaging. Nat Commun, 2014, 5: 5573-22582 CrossRef Google Scholar

[65] Piliarik M, Sandoghdar V. Direct optical sensing of single unlabelled proteins and super-resolution imaging of their binding sites. Nat Commun, 2014, 5: 4495. Google Scholar

[66] See C W, Hu F, Chuang C J, et al. Super-resolution imaging using proximity projection grating and structured light illumination. Opt Express, 2013, 21: 15155-15167 CrossRef Google Scholar

[67] Sobieranski A C, Inci F, Tekin H C, et al. Portable lensless wide-field microscopy imaging platform based on digital inline holography and multi-frame pixel super-resolution. Light-Sci Appl, 2015, 4: e346-15167 CrossRef Google Scholar

[68] Tang H H, Liu P K. Long-distance super-resolution imaging assisted by enhanced spatial Fourier transform. Opt Express, 2015, 23: 23613-23623 CrossRef Google Scholar

[69] Tang Y, Wang X, Zhang X, et al. Sub-nanometer drift correction for super-resolution imaging. Opt Lett, 2014, 39: 5685-5688 CrossRef Google Scholar

[70] Wang F F, Lai H S S, Liu L Q, et al. Super-resolution endoscopy for real-time wide-field imaging. Opt Express, 2015, 23: 16803-16811 CrossRef Google Scholar

[71] Willets K A, Weber M L. Super-resolution imaging of surface-enhanced Raman scattering hot spots under electrochemical control. In: Proceedings of SPIE Micro- and Nanotechnology Sensors, Systems, and Applications VII, 2015. 9467. Google Scholar

[72] Wu K D, Wang G P. One-dimensional Fibonacci grating for far-field super-resolution imaging. Opt Lett, 2013, 38: 2032-2034 CrossRef Google Scholar

[73] An Q, Jaramillo-Botero A, Liu W G, et al. Reaction Pathways of GaN (0001) Growth from Trimethylgallium and Ammonia versus Triethylgalliunn and Hydrazine Using First Principle Calculations. J Phys Chem C, 2015, 119: 4095-4103 CrossRef Google Scholar

[74] Appavoo K, Liu M Z, Sfeir M Y. Role of size and defects in ultrafast broadband emission dynamics of ZnO nanostructures. Appl Phys Lett, 2014, 104: 133101-4103 CrossRef Google Scholar

[75] Appavoo K, Sfeir M Y. Enhanced broadband ultrafast detection of ultraviolet emission using optical Kerr gating. Rev Sci Instrum, 2014, 85: 055114-4103 CrossRef Google Scholar

[76] Cai Y, Han Z H, Wang X X, et al. Analysis of threshold current behavior for bulk and quantum-well germanium laser structures. IEEE J Sel Top Quant, 2013, 19: 1901009-4103 CrossRef Google Scholar

[77] Cai Z H, Narang P, Atwater H A, et al. Cation-mutation design of quaternary nitride semiconductors lattice-matched to GaN. Chem Mater, 2015, 27: 7757-7764 CrossRef Google Scholar

[78] Chang H X, Cheng J S, Liu X Q, et al. Facile synthesis of wide-bandgap fluorinated graphene semiconductors. Chem-Eur J, 2011, 17: 8896-8903 CrossRef Google Scholar

[79] Chen Q S, Jiang Y N, Yan J Y, et al. Modeling of ammonothermal growth processes of GaN crystal in large-size pressure systems. Res Chem Intermediat, 2011, 37: 467-477 CrossRef Google Scholar

[80] Chu T, Ilatikhameneh H, Klimeck G, et al. Electrically tunable bandgaps in bilayer MoS2. Nano Lett, 2015, 15: 8000-8007 CrossRef Google Scholar

[81] Claudel A, Chowanek Y, Blanquet E, et al. Aluminum nitride homoepitaxial growth on polar and non-polar AlN PVT substrates by high temperature CVD (HTCVD). Phys Status Solid C, 2011, 8: 2019-2021 CrossRef Google Scholar

[82] Gulbahar B, Akan O B. A communication theoretical modeling of single-walled carbon nanotube optical nanoreceivers and broadcast power allocation. IEEE Tran Nanotech, 2012, 11: 395-405 CrossRef Google Scholar

[83] Kang K, Xie S E, Huang L J, et al. High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature, 2015, 520: 656-660 CrossRef Google Scholar

[84] Ko W, Lee S, Myoung N, et al. Solution processed vertically stacked ZnO sheet-like nanorod p-n homojunctions and their application as UV photodetectors. J Mater Chem C, 2016, 4: 142-149. Google Scholar

[85] Lashkarev G V, Shtepliuk I I, Ievtushenko A I, et al. Properties of solid solutions, doped film, and nanocomposite structures based on zinc oxide. Low Temp Phys, 2015, 41: 129-140 CrossRef Google Scholar

[86] Li Z Y, Yuan X M, Fu L, et al. Room temperature GaAsSb single nanowire infrared photodetectors. Nanotechnology, 2015, 26: 445202-140 CrossRef Google Scholar

[87] Majety S, Cao X K, Dahal R, et al. Semiconducting hexagonal boron nitride for deep ultraviolet photonics. In: Proceedings of SPIE Quantum Sensing and Nanophotonic Devices Ix, San Francisco, 2012. 8268: 1-8. Google Scholar

[88] Naeemullah, Murtaza G, Khenata R, et al. Phase transition, electronic and optical properties of NaCl under pressure. Mod Phys Lett B, 2014, 28: 1450062. Google Scholar

[89] Nagar S, Chakrabarti S. P-type ZnO films by phosphorus doping using plasma immersion ion-implantation technique. In: Proceedings of SPIE Oxide-Based Materials and Devices IV, San Francisco, 2013. 8626: 1-8. Google Scholar

[90] Nagar S, Sinha B, Mandal A, et al. Influence of Li implantation on the optical and electrical properties of ZnO film. In: Proceedings of SPIE Oxide-Based Materials and Devices II, San Francisco, 2011. 7940: 1-7. Google Scholar

[91] Nam S H, Boo J H. Rutile structured SnO2 nanowires synthesized with metal catalyst by thermal evaporation method. J Nanosci Nanotech, 2012, 12: 1559-1562 CrossRef Google Scholar

[92] Nyawo T G, Ndwandwe O M. Reactive DC sputter deposition and charactersation of AlN thin films. In: Proceedings of SAIP2012: the 57th Annual Conference of the South African Institute of Physics, Pretoria, 2012. 180-185. Google Scholar

[93] Okell W A, Witting T, Fabris D, et al. Temporal broadening of attosecond photoelectron wavepackets from solid surfaces. Optica, 2015, 2: 383-387 CrossRef Google Scholar

[94] Ou H Y, Ou Y Y, Argyraki A, et al. Advances in wide bandgap SiC for optoelectronics. Eur Phys J B, 2014, 87: 58-387 CrossRef Google Scholar

[95] Park J S, Lee J M, Hwang S K, et al. A ZnO/N-doped carbon nanotube nanocomposite charge transport layer for high performance optoelectronics. J Mater Chem, 2012, 22: 12695-12700 CrossRef Google Scholar

[96] Park S H, Yuan G, Chen D T, et al. Wide bandgap III-Nitride nanomembranes for optoelectronic applications. Nano Lett, 2014, 14: 4293-4298 CrossRef Google Scholar

[97] Park Y S. Wide bandgap III-Nitride semiconductors: opportunities for future optoelectronics. Opto-Electron Rev, 2001, 9: 117-124. Google Scholar

[98] Sang N X, Beng T C, Jie T, et al. Fabrication of p-type ZnO nanorods/n-GaN film heterojunction ultraviolet light-emitting diodes by aqueous solution method. Phys Status Solid A, 2013, 210: 1618-1623 CrossRef Google Scholar

[99] Tan H, Fan C, Ma L, et al. Single-crystalline InGaAs nanowires for room-temperature high-performance near-infrared photodetectors. Nano-Micro Lett, 2016, 8: 29-35 CrossRef Google Scholar

[100] Tournier D, Brosselard P, Raynaud C, et al. Wide band gap semiconductors benefits for high power, high voltage and high temperature applications. Adv Mater Res-Switz, 2011, 324: 46-51 CrossRef Google Scholar

[101] Ullah N, Ullah H, Murtaza G, et al. Structural phase transition and optoelectronic properties of ZnS under pressure. J Optoelectron Adv M, 2015, 17: 1272-1277. Google Scholar

[102] Weiss N O, Zhou H L, Liao L, et al. Graphene: an emerging electronic material. Adv Mater, 2012, 24: 5782-5825 CrossRef Google Scholar

[103] Wen Z, Luo J S, Zhu Y F, et al. Cohesive-energy-resolved bandgap of nanoscale graphene derivatives. Chemphyschem, 2014, 15: 2563-2568 CrossRef Google Scholar

[104] Zeggai O, Ould-Abbas A, Bouchaour M, et al. Biological detection by high electron mobility transistor (HEMT) based AlGaN/GaN. Phys Status Solid C, 2014, 11: 274-279 CrossRef Google Scholar

[105] Zhou M, Duan W H, Chen Y, et al. Single layer lead iodide: computational exploration of structural, electronic and optical properties, strain induced band modulation and the role of spin-orbital-coupling. Nanoscale, 2015, 7: 15168-15174 CrossRef Google Scholar