logo

SCIENTIA SINICA Informationis, Volume 47 , Issue 1 : 86-98(2017) https://doi.org/10.1360/N112016-00016

Energy cut based SAR image segmentation}{Energy cut based SAR image segmentation

More info
  • ReceivedJan 19, 2016
  • AcceptedFeb 26, 2016
  • PublishedOct 25, 2016

Abstract


References

[1] Smith D M. Speckle reduction and segmentation of synthetic aperture radar images. Int J Remote Sens, 1996, 17: 2043-2057 CrossRef Google Scholar

[2] Roger F, Armand L, Philippe M, et al. An optimal multiedge detector for SAR mage segmentation. IEEE Trans Geosci Remote Sens, 1998, 36: 793-802 CrossRef Google Scholar

[3] Carvalho E A, Ushizima D M, Medeiros F N S, et al. SAR imagery segmentation by statistical region growing and hierarchical merging. Digital Signal Process, 2010, 20: 1365-1378 CrossRef Google Scholar

[4] Huawu D, Clausi D A. Unsupervised segmentation of synthetic aperture radar sea ice imagery using a novel markov random field model. IEEE Trans Geosci Remote Sens, 2005, 43: 528-538 CrossRef Google Scholar

[5] Yu P, Qin A K, Clausi D A. Unsupervised polarimetric SAR image segmentation and classification using region growing with edge penalty. IEEE Trans Geosci Sens, 2012, 50: 1302-1317 CrossRef Google Scholar

[6] Marques R C P, Medeiros F N, Nobre J S. SAR image segmentation based on level set approach and model. IEEE Trans Pattern Anal Mach Intell, 2012, 34: 2046-2057 CrossRef Google Scholar

[7] Oliver C, Quegan S. Understanding Synthetic Aperture Radar Images. Raleigh: SciTech Publishing Inc, 2004. 195-257. Google Scholar

[8] Caves R, Quegan S, White R. Quantitative comparison of the performance of SAR segmentation algorithms. IEEE Trans Image Process, 1998, 7: 1534-1546 CrossRef Google Scholar

[9] Tung F, Wong A, Clausi D. Enabling scalable spectral clustering for image segmentation. Pattern Recogn, 2010, 43: 4069-4076 CrossRef Google Scholar

[10] Garc\'{\i}a J F G, Venegas-Andraca S E. Region-based approach for the spectral clustering Nyström approximation with an application to burn depth assessment. Mach Vision Appl, 2015, 26: 353-368 CrossRef Google Scholar

[11] Jiang M, Li C, Feng J, et al. Segmentation via ncuts and lossy minimum description length: a unified approach. In: Proceedings of the 10th Asian Conference on Computer Vision. Berlin: Springer, 2011. 213-224. Google Scholar

[12] Li X, Tian Z. Multiscale stochastic hierarchical image segmentation by spectral clustering. Sci China Ser F-Inf Sci, 2007, 50: 198-211 CrossRef Google Scholar

[13] Kuo C T, Walker P B, Carmichael O, et al. Spectral Clustering for Medical Imaging. In: Proceedings of IEEE International Conference on Data Mining, Shenzhen, 2014. 887-892. Google Scholar

[14] Rezvanifar A, Khosravifard M. Including the size of regions in image segmentation by region-based graph. IEEE Trans Image Process, 2014, 23: 635-644 CrossRef Google Scholar

[15] Gou S P, Zhuang X, Jiao L C. Quantum immune fast spectral clustering for SAR image segmentation. IEEE Geosci Remote Sens Lett, 2012, 9: 8-7 CrossRef Google Scholar

[16] Ersahin K, Cumming I G, Ward R K. Segmentation and classification of polarimetric SAR data using spectral graph partitioning. IEEE Trans Geosci Remote Sens, 2010, 48: 164-174 CrossRef Google Scholar

[17] Rahmani M, Akbarizadeh G. Unsupervised feature learning based on sparse coding and spectral clustering for segmentation of synthetic aperture radar images. IET Comput Vision, 2015, 9: 629-638 CrossRef Google Scholar

[18] Shi J, Malik J. Normalized cuts and image segmentation. IEEE Trans Pattern Anal Mach Intell, 2000, 22: 888-905 CrossRef Google Scholar

[19] Hagen L, Kahng A B. New spectral methods for ratio cut partitioning and clustering. IEEE Trans Comput Aided Design, 1992, 11: 1074-1085 CrossRef Google Scholar

[20] Ding C H Q, He X, Zha H, et al. A min-max cut algorithm for graph partitioning and data clustering. In: Proceedings of IEEE International Conference on Data Mining, San Jose, 2001. 107-114. Google Scholar

[21] von Luxburg U. A Tutorial on Spectral Clustering. Max Planck Institute for Biological Cybernetics. Technical Report TR-149. 2006. Google Scholar

[22] Nascimento M C V, de Carvalho A C P L F. Spectral methods for graph clustering--a survey. Eur J Oper Res, 2011, 211: 221-231 CrossRef Google Scholar

[23] Fowlkes C, Belongie S, Chung F, et al. Spectral grouping using the Nyström method. IEEE Trans Pattern Anal Mach Intell, 2004, 26: 214-225 CrossRef Google Scholar

[24] Ng A Y, Jordan M I, Weiss Y. On spectral clustering: analysis and an algorithm. In: Dietterich T G, Becker S, Ghahramani Z, eds. Advances in Neural Information Processing Systems 14. Cambridge: MIT Press, 2002. 849-856. Google Scholar

[25] Yu S X, Shi J. Multiclass spectral clustering. In: Proceedings of the 9th IEEE International Conference on Computer Vision, Nice, 2003. 313-319. Google Scholar

[26] Xiang T, Gong S. Spectral clustering with eigenvector selection. Pattern Recogn, 2008, 41: 1012-1029 CrossRef Google Scholar

[27] Sun J G. Matrix Perturbation Analysis. 2nd ed. Beijing: Science Press, 2001. 60-71 [孙继广. 矩阵的扰动分析. 第2版. 北京: 科学出版社, 2001. 60-71]. Google Scholar