logo

SCIENTIA SINICA Informationis, Volume 47 , Issue 1 : 99-113(2017) https://doi.org/10.1360/N112016-00013

Anti-jamming pulse diversity radar with quadrature \\compressive sampling}{Anti-jamming pulse diversity radar with quadrature compressive sampling

More info
  • ReceivedJan 16, 2016
  • AcceptedApr 14, 2016
  • PublishedOct 25, 2016

Abstract


Funded by

国家自然科学基金(61171166)

国家自然科学基金(61401210)

国家自然科学基金(61571228)


References

[1] Li N J, Zhang Y T. A survey of radar ECM and ECCM. IEEE Trans Aerosp Electron Syst, 1995, 31: 1110-1120 CrossRef Google Scholar

[2] Skolnik M I. Radar Handbook. New York: McGraw-Hill, 2005. Google Scholar

[3] Berger S D. Digital radio frequency memory linear range gate stealer spectrum. IEEE Trans Aerosp Electron Syst, 2003, 39: 725-735 CrossRef Google Scholar

[4] Soumekh M. SAR-ECCM using phase-perturbed LFM chirp signals and DRFM repeat jammer penalization. IEEE Trans Aerosp Electron Syst, 2006, 42: 191-205 CrossRef Google Scholar

[5] Lin K. Anti-jamming MTI radar using variable pulse-codes. Dissertation for M.S. Degree. Cambridge: Massachusetts Institute of Technology, 2002. Google Scholar

[6] Garmatyuk D S, Narayanan R M. ECCM capabilities of a ultrawideband bandlimited random noise imaging radar. IEEE Trans Aerosp Electron Syst, 2002, 38: 1243-1255 CrossRef Google Scholar

[7] Zhang J D, Zhu D Z, Zhang G. New antivelocity deception jamming technique using pulses with adaptive initial phases. IEEE Trans Aerosp Electron Syst, 2013, 49: 1290-1300 CrossRef Google Scholar

[8] Higgins T, Blunt S D, Shackelford A K. Time-range adaptive processing for pulse agile radar. In: Proceedings of International Waveform Diversity and Design Conference, Niagara Falls, 2010. 115-120. Google Scholar

[9] Blunt S D, Gerlach K. Adaptive pulse compression via MMSE estimation. IEEE Trans Aerosp Electron Syst, 2006, 42: 572-584 CrossRef Google Scholar

[10] Jenho T, Steinberg B D. Reduction of sidelobe and speckle artifacts in microwave imaging: the CLEAN technique. IEEE Trans Antenn Propag, 1998, 36: 543-556. Google Scholar

[11] Liu C, Xi F, Chen S Y, et al. Pulse-Doppler signal processing with quadrature compressive sampling. IEEE Trans Aerosp Electron Syst, 2015, 51: 1217-1230 CrossRef Google Scholar

[12] Donoho D L. Compressed sensing. IEEE Trans Inf Theory, 2006, 52: 1289-1306 CrossRef Google Scholar

[13] Baraniuk R G. Compressive sensing. IEEE Signal Process Mag, 2007, 24: 118-121. Google Scholar

[14] Candes E J, Romberg J, Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans Inf Theory, 2006, 52: 489-509 CrossRef Google Scholar

[15] Juhwan Y, Turnes C, Nakamura E B, et al. A compressed sensing parameter extraction platform for radar pulse signal acquisition. IEEE J Emerg Sel Topics Circ Syst, 2012, 2: 626-638 CrossRef Google Scholar

[16] Mishali M, Elder Y C, Dounaevsky O, et al. Xampling: analog to digital at sub-Nyquist rates. IET Circ Device Syst, 2011, 5: 8-20 CrossRef Google Scholar

[17] Xi F, Chen S Y, Liu Z. Quadrature compressive sampling for radar echo signals. In: Proceedings of International Conference on Wireless Communications and Signal Processing (WCSP), Nanjing, 2011. 1-5. Google Scholar

[18] Xi F, Chen S Y, Liu Z. Quadrature compressive sampling for radar signals. IEEE Trans Signal Process, 2014, 62: 2787-2802 CrossRef Google Scholar

[19] Guerci J R. Space-Time Adaptive Processing for Radar. Boston: Artech House, 2003. Google Scholar

[20] Tropp J A, Gilbert A C. Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans Inf Theory, 2007, 53: 4655-4666 CrossRef Google Scholar

[21] Anitori L, Maleki A, Otten M, et al. Design and analysis of compressed sensing radar detectors. IEEE Trans Signal Process, 2013, 61: 813-827 CrossRef Google Scholar

[22] Pollock B, Goodman N A. Detection performance of compressively sampled radar signals. In: Proceedings of IEEE Radar Conference, Kansas City, 2011. 1117-1122. Google Scholar

[23] Liu Y, Wu Q S, Sun Q C, et al. Parameter estimation of moving targets in the SAR system with a low PRF sampling rate. Sci Sin Inf Sci, 2011, 41: 1517-1528 [刘燕, 武其松, 孙光才, 等. 低重频采样SAR系统中地面运动目标参数估计. 中国科学: 信息科学, 2011, 41: 1517-1528]. Google Scholar

[24] Smith G E, Diethe T, Hussian Z, et al. Compressed sampling for pulse Doppler radar. In: Proceedings of IEEE Radar Conference, Washington, 2010. 887-892. Google Scholar

[25] Herman M A, Strohmer T. High-resolution radar via compressed sensing. IEEE Trans Signal Process, 2009, 57: 2275-2284 CrossRef Google Scholar

[26] Zhou H F, Tang T, Li Y, et al. Wide aperture SAR imaging based on compressive sensing. Sci Sin Inform, 2014, 44: 1021-1035 [周汉飞, 唐涛, 李禹, 等. 基于压缩感知的宽孔径SAR成像. 中国科学: 信息科学, 2014, 44: 1021-1035]. Google Scholar

[27] Wang H X, Liang Y, Xing M D, et al. ISAR imaging via sparse frequency-stepped chirp signal. Sci Sin Inf Sci, 2011, 41: 1529-1540 [王虹现, 梁毅, 邢孟道, 等. 基于稀疏线性调频步进信号的ISAR成像. 中国科学: 信息科学, 2011, 41: 1529-1540]. Google Scholar

[28] Rao G, Peng Y, Xu Z B. Robust sparse and low-rank matrix decomposition based on ${{S}_{1/2}}$ modeling. Sci Sin Inform, 2013, 43: 733-748 [饶过, 彭毅, 徐宗本. 基于${{S}_{1/2}}$建模的稳健稀疏-低秩矩阵分解. 中国科学: 信息科学, 2013, 43: 733-748]. Google Scholar

[29] Liu C, Xi F, Chen S Y, et al. Anti-jamming target detection of pulsed-type radars in QuadCS domian. In: Proceedings of IEEE International Conference on Digital Signal Processing, Singapore, 2015. 75-79. Google Scholar

[30] Richards M A. Fundamentals of Radar Signal Processing. New York: McGraw-Hill, 2005. Google Scholar

[31] Ho K C, Chan Y T, Inkol R. A digital quadrature demodulation system. IEEE Trans Aerosp Electron Syst, 1996, 32: 1218-1227 CrossRef Google Scholar

[32] Xi F, Chen S Y, Liu Z. Quardrature compressive sampling for radar signals: output noise and robust reconstruction. In: Proceedings of IEEE China Summit and International Conference on Signal and Information Processing, Xi'an, 2014. 790-794. Google Scholar

[33] Needell D, Vershynin R. Signal recovery from incomplete and inaccurate measurements via regularized orthogonal matching pursuit. IEEE J Sel Topics Signal Process, 2010, 4: 310-316 CrossRef Google Scholar

[34] Chen S S, Donoho D L, Saunders M A. Atomic decomposition by basis pursuit. SIAM J Sci Comput, 1998, 20: 33-61 CrossRef Google Scholar

[35] Tibshirani R. Regression shrinkage and selection via the lasso. J Royal Stat Soc Ser B, 1996, 58: 267-288. Google Scholar

[36] Shihao J, Ya X, Carin L. Bayesian compressive sensing. IEEE Trans Signal Process, 2008, 56: 2346-2356 CrossRef Google Scholar

[37] Trees H L V. Detection Estimation and Modulation Theory, Part I. New York: Wiley-Interscience, 2001. Google Scholar

[38] Horn R A, Johnson C R. Matrix Analysis. Cambridge: Cambridge University Press, 1987. Google Scholar

[39] Fyhn K, Duarte M F, Jensen S H. Compressive parameter estimation for sparse translation-invariant signals using polar interpolation. IEEE Trans Signal Process, 2014, 63: 870-881. Google Scholar