logo

SCIENTIA SINICA Informationis, Volume 46 , Issue 9 : 1321-1338(2016) https://doi.org/10.1360/N112016-00006

A parallel hardware/software partitioning method based on conformity particle-swarm optimization with harmony search

More info
  • ReceivedJan 5, 2016
  • AcceptedMay 3, 2016
  • PublishedSep 9, 2016

Abstract


Funded by

国家自然科学基金(61472289)

湖北省自然科学基金(2015CFB254)


References

[1] Zhang Y G, Luo W J, Zhang Z M, et al. A hardware/software partitioning algorithm based on artificial immune principles. Appl Soft Comput, 2008, 8: 383-391 CrossRef Google Scholar

[2] Arato P, Mann Z A, Orban A. Algorithmic aspects of hardware/software partitioning. ACM Trans Des Automat El, 2005, 10: 136-156 CrossRef Google Scholar

[3] Wu J G, Srikanthan T. Low-complex dynamic programming algorithm for hardware/software partitioning. Inform Process Lett, 2006, 98: 41-46 CrossRef Google Scholar

[4] Madsen J. Lycos: the lyngby cosynthesis system. Des Autom Embed Syst, 1997, 2: 195-235 CrossRef Google Scholar

[5] Chatha K S, Vemuri R. Hardware-software partitioning and pipelined scheduling of transformative applications. IEEE Trans VLSI Syst, 2002, 10: 193-208 CrossRef Google Scholar

[6] Niemann R, Marwedel P. An algorithm for hardware/software partitioning using mixed integer linear programming. Des Autom Embed Syst, 1997, 2: 165-193 CrossRef Google Scholar

[7] Wiangtong T, Cheung P Y K, Luk W. Comparing three heuristic search methods for functional partitioning in hardware-software codesign. Des Autom Embed Syst, 2002, 6: 425-449 CrossRef Google Scholar

[8] Janakiraman N, Kumar P N. Multi-objective module partitioning design for dynamic and partial reconfigurable system-on-chip using genetic algorithm. J Syst Architect, 2014, 60: 119-139 CrossRef Google Scholar

[9] Henkel J, Ernst R. An approach to automated hardware/software partitioning using a flexible granularity that is driven by high-level estimation techniques. IEEE Trans VLSI Syst, 2001, 9: 273-290 CrossRef Google Scholar

[10] Peng L, Wu J G, Wang Y J. Hybrid algorithms for hardware/software partitioning and scheduling on reconfigurable devices. Math Comput Model, 2013, 58: 409-420 CrossRef Google Scholar

[11] Wu J G, Srikanthan T, Chen G. Algorithmic aspects of hardware/software partitioning: 1D search algorithms. IEEE Trans Comput, 2010, 59: 532-544 CrossRef Google Scholar

[12] Eles P, Peng Z, Kuchcinski K, et al. System level hardware/software partitioning based on simulated annealing and tabu search. Des Autom Embed Syst, 1997, 2: 5-32 CrossRef Google Scholar

[13] Wu J G, Pu W, Lam S K, et al. Efficient heuristic and tabu search for hardware/software partitioning. J Supercomput, 2013, 66: 118-134 CrossRef Google Scholar

[14] Xiong Z H, Li S K, Chen J H. Hardware/software partitioning based on ant optimization with initial pheromone. Comput Res Dev, 2005, 42: 2176-2183 [熊志辉, 李思昆, 陈吉华. 具有初始信息素的蚂蚁寻优软硬件划分算法. 计算机研究与发展, 2005, 42: 2176-2183]. Google Scholar

[15] Badawy W, Salem A. Hardware software partitioning using particle swarm optimization technique. In: Proceedings of the 6th International Workshop on System-on-Chip for Real-Time Applications. Alberta: IEEE Press, 2006. 189-194. Google Scholar

[16] Abdelhalim M B, Habib S E D. An integrated high-level hardware/software partitioning methodology. Des Autom Embed Syst, 2011, 15: 19-50 CrossRef Google Scholar

[17] Lopez V M, Lopez J C. On the hardware-software partitioning problem: system modeling and partitioning techniques. ACM Trans Des Automat El, 2003, 8: 269-297 CrossRef Google Scholar

[18] Bhattacharya A, Konar A, Das S, et al. Hardware software partitioning problem in embedded system design using particle swarm optimization algorithm. In: Proceedings of the 2nd International Conference on Complex, Intelligent and Software Intensive Systems. Barcelona: IEEE Press, 2008. 171-176. Google Scholar

[19] Eimuri T, Salehi S. Using DPSO and B&B algorithms for hardware/software partitioning in co-design. In: Proceedings of the 2nd International Conference on Computer Research and Development. Kuala Lumpur: IEEE Press, 2010. 416-420. Google Scholar

[20] Wu Y, Zhang H, Yang H B. Research on parallel HW/SW partitioning based on hybrid PSO algorithm. Lect Notes Comput Sci, 2009, 5574: 449-459 CrossRef Google Scholar

[21] Chen Z, Wu J G, Song G Z, et al. NodeRank: an efficient algorithm for hardware/software partitioning. Chin J Comput, 2013, 36: 2033-2040 [陈志, 武继刚, 宋国治, 等. NodeRank: 一种高效软硬件划分算法. 计算机学报, 2013, 36: 2033-2040]. Google Scholar

[22] Farmahini F A, Mehdi K, Mehdi S J. Parallel-genetic-algorithm-based HW/SW partitioning. In: Proceedings of the International Symposium on Parallel Computing in Electrical Engineering. Bialystok: IEEE Press, 2006. 337-342. Google Scholar

[23] Bordoloi U D, Chakraborty S. GPU-based acceleration of system-level design tasks. Int J Parallel Prog, 2010, 38: 225-253 CrossRef Google Scholar

[24] Bergh F, Engelbrecht A P. A cooperative approach to particle swarm optimization. IEEE Trans Evolut Comput, 2004, 8: 225-239 CrossRef Google Scholar

[25] Coello C A C, Pulido G T, Lechuga M S. Handling multiple objectives with particle swarm optimization. IEEE Trans Evolut Comput, 2004, 8: 256-279 CrossRef Google Scholar

[26] Zhang D J, He F Z, Wu Y Q. Singular feature interoperability of heterogeneous CAD model based on directed mutation particle swarm optimization. Sci Sin Inform, 2015, 45: 634-649 [张德军, 何发智, 吴亦奇. 一种基于定向变异粒子群算法的异构CAD 模型奇异特征互操作方法. 中国科学: 信息科学, 2015, 45: 634-649]. Google Scholar

[27] Hei Y Q, Li W T, Li X H. Novel scheduling strategy for downlink multiuser MIMO system: particle swarm optimization. Sci Sin Inform, 2011, 41: 1463-1473 [黑永强, 李文涛, 李晓辉. 基于粒子群优化的多用户MIMO下行链路调度算法. 中国科学: 信息科学, 2011, 41: 1463-1473]. Google Scholar

[28] Liu C A, Yan X H, Liu C Y. Dynamic path planning for mobile robot based on improved genetic algorithm. Chinese J Electron, 2010, 19: 245-248. Google Scholar

[29] Ratnaweera A, Halgamuge S K, Watson H C. Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients. IEEE Trans Evolut Comput, 2004, 8: 240-255 CrossRef Google Scholar

[30] Liang J J, Qin A K, Suganthan P N, et al. Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Trans Evolut Comput, 2006, 10: 281-295 CrossRef Google Scholar

[31] Veissier I, Boissy A, Nowak R, et al. Ontogeny of social awareness in domestic herbivores. Appl Anim Behav Sci, 1998, 57: 233-245 CrossRef Google Scholar

[32] Herzenstein M, Dholakia U M, Andrews R L. Strategic herding behavior in peer-to-peer loan auctions. J Interact Mark, 2011, 25: 27-36 CrossRef Google Scholar

[33] Clerc M, Kennedy J. The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Trans Evolut Comput, 2002, 6: 58-73 CrossRef Google Scholar

[34] Geem Z W, Kim J H, Loganathan G V. A new heuristic optimization algorithm: harmony search. Simulation, 2001, 76: 60-68 CrossRef Google Scholar

[35] Lee K S, Geem Z W. A new meta-heuristic algorithm for continuous engineering optimization: harmony search theory and practice. Comput Method Appl M, 2005, 194: 3902-3933 CrossRef Google Scholar

[36] Mahdavi M, Fesanghary M, Damangir E. An improved harmony search algorithm for solving optimization problems. Appl Math Comput, 2007, 188: 1567-1579. Google Scholar

[37] Kaveh A, Talatahari S. Particle swarm optimizer, ant colony strategy and harmony search scheme hybridized for optimization of truss structures. Comput Struct, 2009, 87: 267-283 CrossRef Google Scholar

[38] Gordon M I, Thies W, Amarasinghe S. Exploiting coarse-grained task, data, and pipeline parallelism in stream programs. In: Proceedings of the 12th International Conference on Architectural Support for Programming Languages and Operating Systems. California: ACM, 2006. 151-162. Google Scholar

[39] Gao W J, Qian K M. Parallel computing in experimental mechanics and optical measurement: a review. Opt Laser Eng, 2012, 50: 608-617 CrossRef Google Scholar

[40] Dorigo M, Maniezzo V, Colorni A. Ant system: optimization by a colony of cooperating agent. IEEE Syst Man Cybern, 1996, 26: 29-41 CrossRef Google Scholar

[41] Yan X H, He F Z, Chen Y L, et al. An efficient improved particle swarm optimization based on prey behavior of fish schooling. J Adv Mech Des Syst, 2015, 9: 1-10. Google Scholar

[42] Zhan Z H, Zhang J, Li Y, et al. Adaptive particle swarm optimization. IEEE Syst Man Cybern, 2009, 39: 1362-1381 CrossRef Google Scholar

[43] He F Z, Han S H. A method and tool for human-human interaction and instant collaboration in cscw-based CAD. Comput Ind, 2006, 57: 740-751 CrossRef Google Scholar

[44] Zhang D J, He F Z, Han S H, et al. Quantitative optimization of interoperability during feature-based data exchange. Integr Comput-Aid E, 2016, 23: 31-50. Google Scholar

[45] Jing S X, He F Z, Han S H, et al. A method for topological entity correspondence in a replicated collaborative CAD system. Comput Ind, 2009, 60: 467-475 CrossRef Google Scholar