SCIENTIA SINICA Informationis, Volume 47 , Issue 1 : 31-46(2017) https://doi.org/10.1360/N112015-00320

Sequent calculus for minimal non-normal temporal logic}{Sequent calculus for minimal non-normal temporal logic

More info
  • ReceivedApr 30, 2016
  • AcceptedMay 25, 2016
  • PublishedSep 9, 2016


Funded by



[1] Pnueli A. The temporal logic of programs. In: Proceedings of the 18th IEEE Symposium on Foundations of Computer Science, Providence, 1977. 46-67. Google Scholar

[2] $\O$hrstr$\o$m P, Hasle P. Temporal Logic: From Ancient Ideas to Aritificial Intelligence. Dordrecht: Kluwer Academic Publishers, 1995. 334-365. Google Scholar

[3] He P, Tang Z S. NL: a loose natural deduction system of temporal logic. J Softw, 1993, 4: 51-55 [何锫, 唐稚松. NL: 松弛时序逻辑自然推理系统. 软件学报, 1993, 4: 51-55]. Google Scholar

[4] Ben K R, Chen H W, Wang B S. PTL sequent calculus system. Sci China Ser A, 1994, 24: 1092-1098 [贲可荣, 陈火旺, 王兵山. 命题时态逻辑矢列式演算系统. 中国科学A辑, 1994, 24: 1092-1098]. Google Scholar

[5] Clark E M, Emerson E A. Design and synthesis of synchronization skeletons using branching time temporal logic. In: Kozen D, ed. Logic of Programs, LNCS 131. Berlin: Springer-Verlag, 1982. 52-71. Google Scholar

[6] Burgess J. Basic tense logic. In: Gabbay D M, Guenthner F, eds. Handbook of Philosophical Logic (Volume 2). Dordrecht: Kluwer Academic Publishers, 1984. 89-133. Google Scholar

[7] Hodkinson I, Reynolds M. Temporal logic. In: Blackburn P, Benthem J V, Wolter F, eds. Handbook of Modal Logic. Amsterdam: Elsevier, 2007. 655-720. Google Scholar

[8] Blackburn P, Rijke M, Venema Y. Modal Logic. Cambridge: Cambridge University Press, 2011. 190-259. Google Scholar

[9] Lemmon E J. Algebraic semantics for modal logics.I. J Symb Loigc, 1966, 31: 46-65. Google Scholar

[10] Negri S. Proof analysis in modal logic. J Philos Logic, 2005, 34: 507-544 CrossRef Google Scholar

[11] Bonnette N, Goré R. A labelled sequent system for tense logic Kt. In: Antoniou G, Slaney J, eds. Advanced Topics in Artificial Intelligence: 11th Australian Joint Conference on Artificial Intelligence. Berlin: Springer, 1998. 71-82. Google Scholar

[12] Kracht M. Power and weakness of the modal display calculus. In: Wansing H, eds. Proof Theory of Modal Logic. Dordrecht: Kluwer Academic Publishers, 1996. 93-121. Google Scholar

[13] Negri S, Plato J. Structural Proof Theory. Cambridge: Cambridge University Press, 2001. 47-60. Google Scholar