logo

SCIENTIA SINICA Informationis, Volume 46 , Issue 7 : 834-854(2016) https://doi.org/10.1360/N112015-00284

Weighted tabu search for multi-stage nurse rostering problem

More info
  • ReceivedMar 8, 2016
  • AcceptedApr 14, 2016

Abstract


Funded by

国家自然科学基金(61370183)

国家自然科学基金(61100144)


References

[1] Cheang B, Li H B, Lim A, et al. Nurse rostering problems--a bibliographic survey. Eur J Oper Res, 2003, 151: 447 CrossRef Google Scholar

[2] Burke E K, de Causmaecker P, Berghe G V, et al. The state of the art of nurse rostering. J Scheduling, 2004, 7: 441 CrossRef Google Scholar

[3] de Causmaecker P, Berghe G V. A categorisation of nurse rostering problems. J Scheduling, 2011, 14: 3 CrossRef Google Scholar

[4] Isken M W. An implicit tour scheduling model with applications in healthcare. Ann Oper Res, 2004, 128: 91 CrossRef Google Scholar

[5] Glass C A, Knight R A. The nurse rostering problem: a critical appraisal of the problem structure. Eur J Oper Res, 2010, 202: 379 CrossRef Google Scholar

[6] Beli{ë}n J, Demeulemeester E. A branch-and-price approach for integrating nurse and surgery scheduling. Eur J Oper Res, 2008, 189: 652 CrossRef Google Scholar

[7] He F, Qu R. A constraint programming based column generation approach to nurse rostering problems. Comput Oper Res, 2012, 39: 3331 CrossRef Google Scholar

[8] Burke E, de Causmaecker P, Berghe G V. A hybrid tabu search algorithm for the nurse rostering problem. In: Proceedings of Simulated Evolution and Learning. Berlin: Springer, 1999. 187-194. Google Scholar

[9] Burke E, Cowling P, de Causmaecker P, et al. A memetic approach to the nurse rostering problem. Appl Intell, 2001, 15: 199 CrossRef Google Scholar

[10] Burke E, de Causmaecker P, Petrovic S, et al. Variable neighborhood search for nurse rostering problems. In: Proceedings of Metaheuristics: Computer Decision-Making. Berlin: Springer, 2004. 153-172. Google Scholar

[11] Burke E K, Curtois T, Post G, et al. A hybrid heuristic ordering and variable neighbourhood search for the nurse rostering problem. Eur J Oper Res, 2008, 188: 330 CrossRef Google Scholar

[12] Burke E K, Curtois T, Qu R, et al. A scatter search methodology for the nurse rostering problem. J Oper Res Soc, 2010, 61: 1667 CrossRef Google Scholar

[13] Burke E K, Curtois T, Qu R, et al. A time predefined variable depth search for nurse rostering. INFORMS J Comput, 2013, 25: 411 CrossRef Google Scholar

[14] Bai R, Burke E K, Kendall G, et al. A hybrid evolutionary approach to the nurse rostering problem. IEEE Trans Evol Comput, 2010, 14: 580 CrossRef Google Scholar

[15] Anwar K, Awadallah M, Khader A T, et al. Hyper-heuristic approach for solving nurse rostering problem. In: Proceedings of IEEE Symposium on Computational Intelligence in Ensemble Learning (CIEL), Orlando, 2014. 1-6. Google Scholar

[16] Huang H, Lin W J, Lin Z Y, et al. An evolutionary algorithm based on constraint set partitioning for nurse rostering problems. Neural Comput Appl, 2014, 25: 703 CrossRef Google Scholar

[17] Haspeslagh S, de Causmaecker P, Schaerf A, et al. The first international nurse rostering competition 2010. Ann Oper Res, 2014, 218: 221 CrossRef Google Scholar

[18] Ceschia S, Dang N T T, de Causmaecker P, et al. Second international nurse rostering competition (INRC-II)--problem description and rules--. arXiv:1501.04177, 2015. Google Scholar

[19] Valouxis C, Gogos C, Goulas G, et al. A systematic two phase approach for the nurse rostering problem. Eur J Oper Res, 2012, 219: 425 CrossRef Google Scholar

[20] Burke E K, Curtois T. New approaches to nurse rostering benchmark instances. Eur J Oper Res, 2014, 237: 71 CrossRef Google Scholar

[21] L{ü} Z P, Hao J K. Adaptive neighborhood search for nurse rostering. Eur J Oper Res, 2012, 218: 865-876 CrossRef Google Scholar