References
[1]
Wang Q, Wu S J, Li M S. Software defect prediction. J Softw, 2008, 19: 1565-1580 [王青, 伍书剑, 李明树. 软件缺陷预测技术. 软件学报, 2008, 19: 1565-1580].
Google Scholar
http://scholar.google.com/scholar_lookup?title=Wang Q, Wu S J, Li M S. Software defect prediction. J Softw, 2008, 19: 1565-1580 [王青, 伍书剑, 李明树. 软件缺陷预测技术. 软件学报, 2008, 19: 1565-1580]&
[2]
Hall
T,
Beecham
S,
Bowes
D, et al.
A systematic literature review on fault prediction performance in software engineering.
IEEE Trans Softw Eng,
2012, 38: 1276-1304
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=A systematic literature review on fault prediction performance in software engineering&author=Hall T&author=Beecham S&author=Bowes D&publication_year=2012&journal=IEEE Trans Softw Eng&volume=38&pages=1276-1304
[3]
Yu S S, Zhou S G, Guan J H. Software engineering data mining: a survey. J Front Comput Sci Tech, 2012, 6: 1-31 [郁抒思, 周水庚, 关佶红. 软件工程数据挖掘研究进展. 计算机科学与探索, 2012, 6: 1-31].
Google Scholar
http://scholar.google.com/scholar_lookup?title=Yu S S, Zhou S G, Guan J H. Software engineering data mining: a survey. J Front Comput Sci Tech, 2012, 6: 1-31 [郁抒思, 周水庚, 关佶红. 软件工程数据挖掘研究进展. 计算机科学与探索, 2012, 6: 1-31]&
[4]
Chen X, Gu Q, Liu W S, et al. Survey of static software defect prediction. J Softw, 2016, 1: 1-25 [陈翔, 顾庆, 刘望舒, 等. 静态软件缺陷预测方法研究. 软件学报, 2016, 1: 1-25].
Google Scholar
http://scholar.google.com/scholar_lookup?title=Chen X, Gu Q, Liu W S, et al. Survey of static software defect prediction. J Softw, 2016, 1: 1-25 [陈翔, 顾庆, 刘望舒, 等. 静态软件缺陷预测方法研究. 软件学报, 2016, 1: 1-25]&
[5]
Ghotra B, McIntosh S, Hassan A E. Revisiting the impact of classification techniques on the performance of defect prediction models. In: Proceedings of the International Conference on Software Engineering, Firenze, 2015. 789-800.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Ghotra B, McIntosh S, Hassan A E. Revisiting the impact of classification techniques on the performance of defect prediction models. In: Proceedings of the International Conference on Software Engineering, Firenze, 2015. 789-800&
[6]
Peters F, Menzies T, Layman L. LACE2: better privacy-preserving data sharing for cross project defect prediction. In: Proceedings of the International Conference on Software Engineering, Firenze, 2015. 801-811.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Peters F, Menzies T, Layman L. LACE2: better privacy-preserving data sharing for cross project defect prediction. In: Proceedings of the International Conference on Software Engineering, Firenze, 2015. 801-811&
[7]
Tantithamthavorn C, McIntosh S, Hassan A E, et al. The impact of mislabelling on the performance and interpretation of defect prediction models. In: Proceedings of the International Conference on Software Engineering, Firenze, 2015. 812-823.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Tantithamthavorn C, McIntosh S, Hassan A E, et al. The impact of mislabelling on the performance and interpretation of defect prediction models. In: Proceedings of the International Conference on Software Engineering, Firenze, 2015. 812-823&
[8]
Jing X Y, Wu F, Dong X W, et al. Heterogeneous cross-company defect prediction by unified metric representation and CCA-based transfer learning. In: Proceedings of the International Symposium on Foundations of Software Engineering, Bergamo, 2015. 496-507.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Jing X Y, Wu F, Dong X W, et al. Heterogeneous cross-company defect prediction by unified metric representation and CCA-based transfer learning. In: Proceedings of the International Symposium on Foundations of Software Engineering, Bergamo, 2015. 496-507&
[9]
Nam J, Kim S. Heterogeneous defect prediction. In: Proceedings of the International Symposium on Foundations of Software Engineering, Bergamo, 2015. 508-519.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Nam J, Kim S. Heterogeneous defect prediction. In: Proceedings of the International Symposium on Foundations of Software Engineering, Bergamo, 2015. 508-519&
[10]
Kim M, Nam J, Yeon J, et al. REMI: defect prediction for efficient API testing. In: Proceedings of the International Symposium on Foundations of Software Engineering, Bergamo, 2015. 990-993.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Kim M, Nam J, Yeon J, et al. REMI: defect prediction for efficient API testing. In: Proceedings of the International Symposium on Foundations of Software Engineering, Bergamo, 2015. 990-993&
[11]
Nam J, Kim S. CLAMI: defect prediction on unlabeled datasets. In: Proceedings of the International Conference on Automated Software Engineering, Lincoln, 2015. 452-463.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Nam J, Kim S. CLAMI: defect prediction on unlabeled datasets. In: Proceedings of the International Conference on Automated Software Engineering, Lincoln, 2015. 452-463&
[12]
Rahman F, Khatri S, Barr E T, et al. Comparing static bug finders and statistical prediction. In: Proceedings of the International Conference on Software Engineering, Hyderabad, 2014. 424-434.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Rahman F, Khatri S, Barr E T, et al. Comparing static bug finders and statistical prediction. In: Proceedings of the International Conference on Software Engineering, Hyderabad, 2014. 424-434&
[13]
Shepperd
M,
Bowes
D,
Hall
T.
Researcher bias: the use of machine learning in software defect prediction.
IEEE Trans Softw Eng,
2014, 40: 603-616
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Researcher bias: the use of machine learning in software defect prediction&author=Shepperd M&author=Bowes D&author=Hall T&publication_year=2014&journal=IEEE Trans Softw Eng&volume=40&pages=603-616
[14]
Radjenovic
D,
Hericko
M,
Torkar
R, et al.
Software fault prediction metrics: a systematic literature review.
Inf Softw Tech,
2013, 55: 1397-1418
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Software fault prediction metrics: a systematic literature review&author=Radjenovic D&author=Hericko M&author=Torkar R&publication_year=2013&journal=Inf Softw Tech&volume=55&pages=1397-1418
[15]
McCabe T J. A complexity measure. IEEE Trans Softw Eng, 1976, 2: 308-320.
Google Scholar
http://scholar.google.com/scholar_lookup?title=McCabe T J. A complexity measure. IEEE Trans Softw Eng, 1976, 2: 308-320&
[16]
Halstead M H. Elements of Software Science (Operating and Programming Systems Series). New York: Elsevier Science Inc., 1977.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Halstead M H. Elements of Software Science (Operating and Programming Systems Series). New York: Elsevier Science Inc., 1977&
[17]
Chidamber
S R,
Kemerer
C F.
A metrics suite for object oriented design.
IEEE Trans Softw Eng,
1994, 20: 476-493
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=A metrics suite for object oriented design&author=Chidamber S R&author=Kemerer C F&publication_year=1994&journal=IEEE Trans Softw Eng&volume=20&pages=476-493
[18]
Nagappan N, Ball T. Use of relative code churn measures to predict system defect density. In: Proceedings of the International Conference on Software Engineering, St. Louis, 2005. 284-292.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Nagappan N, Ball T. Use of relative code churn measures to predict system defect density. In: Proceedings of the International Conference on Software Engineering, St. Louis, 2005. 284-292&
[19]
Moser R, Pedrycz W, Succi G. A comparative analysis of the efficiency of change metrics and static code attributes for defect prediction. In: Proceedings of the International Conference on Software Engineering, Leipzig, 2008. 181-190.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Moser R, Pedrycz W, Succi G. A comparative analysis of the efficiency of change metrics and static code attributes for defect prediction. In: Proceedings of the International Conference on Software Engineering, Leipzig, 2008. 181-190&
[20]
Hassan A E. Predicting faults using the complexity of code changes. In: Proceedings of the International Conference on Software Engineering, Vancouver, 2009. 78-88.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Hassan A E. Predicting faults using the complexity of code changes. In: Proceedings of the International Conference on Software Engineering, Vancouver, 2009. 78-88&
[21]
Pinzger M, Nagappan N, Murphy B. Can developer-module networks predict failures? In: Proceedings of the International Symposium on Foundations of Software Engineering, Atlanta, 2008. 2-12.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Pinzger M, Nagappan N, Murphy B. Can developer-module networks predict failures? In: Proceedings of the International Symposium on Foundations of Software Engineering, Atlanta, 2008. 2-12&
[22]
Meneely A, Williams L, Snipes W, et al. Predicting failures with developer networks and social network analysis. In: Proceedings of the International Symposium on Foundations of Software Engineering, Atlanta, 2008. 13-23.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Meneely A, Williams L, Snipes W, et al. Predicting failures with developer networks and social network analysis. In: Proceedings of the International Symposium on Foundations of Software Engineering, Atlanta, 2008. 13-23&
[23]
Jiang T, Tan L, Kim S. Personalized defect prediction. In: Proceedings of International Conference on Automated Software Engineering, Silicon Valley, 2013. 279-289.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Jiang T, Tan L, Kim S. Personalized defect prediction. In: Proceedings of International Conference on Automated Software Engineering, Silicon Valley, 2013. 279-289&
[24]
Zimmermann T, Nagappan N. Predicting defects using network analysis on dependency graphs. In: Proceedings of the International Conference on Software Engineering, Leipzig, 2008. 531-540.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Zimmermann T, Nagappan N. Predicting defects using network analysis on dependency graphs. In: Proceedings of the International Conference on Software Engineering, Leipzig, 2008. 531-540&
[25]
Bird C, Nagappan N, Gall H, et al. Putting it all together: using socio-technical networks to predict failures. In: Proceedings of the International Symposium on Software Reliability Engineering, Mysuru, 2009. 109-119.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Bird C, Nagappan N, Gall H, et al. Putting it all together: using socio-technical networks to predict failures. In: Proceedings of the International Symposium on Software Reliability Engineering, Mysuru, 2009. 109-119&
[26]
Nagappan N, Murphy B, Basili V R. The influence of organizational structure on software quality: an empirical case study. In: Proceedings of the International Conference on Software Engineering, Leipzig, 2008. 521-530.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Nagappan N, Murphy B, Basili V R. The influence of organizational structure on software quality: an empirical case study. In: Proceedings of the International Conference on Software Engineering, Leipzig, 2008. 521-530&
[27]
Mockus A. Organizational volatility and its effects on software defects. In: Proceedings of the International Symposium on Foundations of Software Engineering, Santa Fe, 2010. 117-126.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Mockus A. Organizational volatility and its effects on software defects. In: Proceedings of the International Symposium on Foundations of Software Engineering, Santa Fe, 2010. 117-126&
[28]
Bird C, Nagappan N, Devanbu P, et al. Does distributed development affect software quality? An empirical case study of Windows Vista. In: Proceedings of International Conference on Software Engineering, Vancouver, 2009. 518-528.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Bird C, Nagappan N, Devanbu P, et al. Does distributed development affect software quality? An empirical case study of Windows Vista. In: Proceedings of International Conference on Software Engineering, Vancouver, 2009. 518-528&
[29]
Shepperd
M,
Song
Q B,
Sun
Z B, et al.
Data quality: some comments on the NASA software defect datasets.
IEEE Trans Softw Eng,
2013, 39: 1208-1215
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Data quality: some comments on the NASA software defect datasets&author=Shepperd M&author=Song Q B&author=Sun Z B&publication_year=2013&journal=IEEE Trans Softw Eng&volume=39&pages=1208-1215
[30]
Bird C, Bachmann A, Aune E, et al. Fair and balanced? Bias in bug-fix datasets. In: Proceedings of the the Joint Meeting of the European Software Engineering Conference and the Symposium on the Foundations of Software Engineering, Amsterdam, 2009. 121-130.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Bird C, Bachmann A, Aune E, et al. Fair and balanced? Bias in bug-fix datasets. In: Proceedings of the the Joint Meeting of the European Software Engineering Conference and the Symposium on the Foundations of Software Engineering, Amsterdam, 2009. 121-130&
[31]
Bachmann A, Bird C, Rahman F, et al. The missing links: bugs and bug-fix commits. In: Proceedings of International Symposium on Foundations of Software Engineering, Santa Fe, 2010. 97-106.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Bachmann A, Bird C, Rahman F, et al. The missing links: bugs and bug-fix commits. In: Proceedings of International Symposium on Foundations of Software Engineering, Santa Fe, 2010. 97-106&
[32]
Nguyen T H, Adams B, Hassan A E. A case study of bias in bug-fix datasets. In: Proceedings of the Working Conference on Reverse Engineering, Beverly, 2010. 259-268.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Nguyen T H, Adams B, Hassan A E. A case study of bias in bug-fix datasets. In: Proceedings of the Working Conference on Reverse Engineering, Beverly, 2010. 259-268&
[33]
Gao
K H,
Khoshgoftaar
T M,
Wang
H J, et al.
Choosing software metrics for defect prediction: an investigation on feature selection techniques.
Softw Pract Exper,
2011, 41: 579-606
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Choosing software metrics for defect prediction: an investigation on feature selection techniques&author=Gao K H&author=Khoshgoftaar T M&author=Wang H J&publication_year=2011&journal=Softw Pract Exper&volume=41&pages=579-606
[34]
Menzies T, Greenwald J, Frank A. Data mining static code attributes to learn defect predictors. IEEE Trans Softw Eng, 2007, 32: 1-12.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Menzies T, Greenwald J, Frank A. Data mining static code attributes to learn defect predictors. IEEE Trans Softw Eng, 2007, 32: 1-12&
[35]
Song
Q B,
Jia
Z H,
Shepperd
M, et al.
A general software defect-proneness prediction framework.
IEEE Trans Softw Eng,
2011, 37: 356-370
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=A general software defect-proneness prediction framework&author=Song Q B&author=Jia Z H&author=Shepperd M&publication_year=2011&journal=IEEE Trans Softw Eng&volume=37&pages=356-370
[36]
Shivaji
S,
Whitehead
Jr E J,
Akella
R, et al.
Reducing features to improve code change-based bug prediction.
IEEE Trans Softw Eng,
2013, 39: 552-569
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Reducing features to improve code change-based bug prediction&author=Shivaji S&author=Whitehead Jr E J&author=Akella R&publication_year=2013&journal=IEEE Trans Softw Eng&volume=39&pages=552-569
[37]
Wang H J, Khoshgoftaar T M, Napolitano A. A comparative study of ensemble feature selection techniques for software defect prediction. In: Proceedings of the International Conference on Machine Learning and Applications, Washington, 2010. 135-140.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Wang H J, Khoshgoftaar T M, Napolitano A. A comparative study of ensemble feature selection techniques for software defect prediction. In: Proceedings of the International Conference on Machine Learning and Applications, Washington, 2010. 135-140&
[38]
Khoshgoftaar T M, Gao K H, Seliya N. Attribute selection and imbalanced data: problems in software defect prediction. In: Proceedings of the International Conference on Tools With Artificial Intelligence, Arras, 2010. 137-144.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Khoshgoftaar T M, Gao K H, Seliya N. Attribute selection and imbalanced data: problems in software defect prediction. In: Proceedings of the International Conference on Tools With Artificial Intelligence, Arras, 2010. 137-144&
[39]
Wang
S,
Yao
X.
Using class imbalance learning for software defect prediction.
IEEE Trans Reliab,
2013, 62: 434-443
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Using class imbalance learning for software defect prediction&author=Wang S&author=Yao X&publication_year=2013&journal=IEEE Trans Reliab&volume=62&pages=434-443
[40]
Jing X Y, Ying S, Zhang Z W, et al. Dictionary learning based software defect prediction. In: Proceedings of the International Conference on Software Engineering, Hyderabad, 2014. 414-423.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Jing X Y, Ying S, Zhang Z W, et al. Dictionary learning based software defect prediction. In: Proceedings of the International Conference on Software Engineering, Hyderabad, 2014. 414-423&
[41]
Hall M A. Correlation-based Feature selection for discrete and numeric class machine learning. In: Proceedings of the International Conference on Machine Learning, Stanford, 2000. 359-366.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Hall M A. Correlation-based Feature selection for discrete and numeric class machine learning. In: Proceedings of the International Conference on Machine Learning, Stanford, 2000. 359-366&
[42]
Yu L, Liu H. Feature selection for high-dimensional data: a fast correlation-based filter solution. In: Proceedings of the International Conference on Machine Learning, Washington, 2003. 856-863.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Yu L, Liu H. Feature selection for high-dimensional data: a fast correlation-based filter solution. In: Proceedings of the International Conference on Machine Learning, Washington, 2003. 856-863&
[43]
Kim S, Whitehead Jr E J, Zhang Y. Classifying software changes: clean or buggy? IEEE Trans Softw Eng, 2008, 34: 181-196.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Kim S, Whitehead Jr E J, Zhang Y. Classifying software changes: clean or buggy? IEEE Trans Softw Eng, 2008, 34: 181-196&
[44]
Kira K, Rendell L A. A practical approach to feature selection. In: Proceedings of the International Workshop on Machine Learning, Aberdeen, 1992. 249-256.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Kira K, Rendell L A. A practical approach to feature selection. In: Proceedings of the International Workshop on Machine Learning, Aberdeen, 1992. 249-256&
[45]
Fayyad U M, Irani K B. Multi-Interval discretization of continuous-valued attributes for classification learning. In: Proceedings of the International Joint Conference on Artificial Intelligence, Chambery, 1993. 1022-1029.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Fayyad U M, Irani K B. Multi-Interval discretization of continuous-valued attributes for classification learning. In: Proceedings of the International Joint Conference on Artificial Intelligence, Chambery, 1993. 1022-1029&
[46]
Lessmann
S,
Baesens
B,
Mues
C, et al.
Benchmarking classification models for software defect prediction: a proposed framework and novel findings.
IEEE Trans Softw Eng,
2008, 34: 485-496
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Benchmarking classification models for software defect prediction: a proposed framework and novel findings&author=Lessmann S&author=Baesens B&author=Mues C&publication_year=2008&journal=IEEE Trans Softw Eng&volume=34&pages=485-496
[47]
Dash
M,
Liu
H.
Consistency-based search in feature selection.
Artif Intell,
2003, 151: 155-176
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Consistency-based search in feature selection&author=Dash M&author=Liu H&publication_year=2003&journal=Artif Intell&volume=151&pages=155-176
[48]
Kononenko I. Estimating attributes: analysis and extensions of RELIEF. In: Proceedings of the European Conference on Machine Learning, Catania, 1994. 171-182.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Kononenko I. Estimating attributes: analysis and extensions of RELIEF. In: Proceedings of the European Conference on Machine Learning, Catania, 1994. 171-182&
[49]
Zimmermann T, Premraj R, Zeller A. Predicting defects for eclipse. In: Proceedings of the International Workshop on Predictor Models in Software Engineering, Washington, 2007. 1-7.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Zimmermann T, Premraj R, Zeller A. Predicting defects for eclipse. In: Proceedings of the International Workshop on Predictor Models in Software Engineering, Washington, 2007. 1-7&
[50]
Witten I H, Frank E, Hall M A. Data Mining: Practical Machine Learning Tools and Techniques. 3rd ed. San Francisco: Morgan Kaufmann Publishers Inc., 2011.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Witten I H, Frank E, Hall M A. Data Mining: Practical Machine Learning Tools and Techniques. 3rd ed. San Francisco: Morgan Kaufmann Publishers Inc., 2011&