References
[1]
Zhao
Z Y,
Feng
S Z,
Wang
Q, et al.
Knowl-Based Syst,
2012, 26: 164-173
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?author=Zhao Z Y&author=Feng S Z&author=Wang Q&publication_year=2012&journal=Knowl-Based Syst&volume=26&pages=164-173
[2]
Yin Z J, Cao L L, Gu Q Q, et al. Latent community topic analysis: integration of community discovery with topic modeling. ACM TIST, 2012, 3: 63.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Yin Z J, Cao L L, Gu Q Q, et al. Latent community topic analysis: integration of community discovery with topic modeling. ACM TIST, 2012, 3: 63&
[3]
Suo B, Li Z H, Chen Q, et al. Dynamic community detection based on information flow analysis. J Softw, 2014, 25: 547-559 [索勃, 李战怀, 陈群, 等. 基于信息流动分析的动态社区发现方法. 软件学报, 2014, 25: 547-559].
Google Scholar
http://scholar.google.com/scholar_lookup?title=Suo B, Li Z H, Chen Q, et al. Dynamic community detection based on information flow analysis. J Softw, 2014, 25: 547-559 [索勃, 李战怀, 陈群, 等. 基于信息流动分析的动态社区发现方法. 软件学报, 2014, 25: 547-559]&
[4]
Xu Z Q, Ke Y P, Wang Y. A model-based approach to attributed graph clustering. In: Proceedings of the 12th IEEE International Conference on Data Mining, Brussels, 2012. 505-516.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Xu Z Q, Ke Y P, Wang Y. A model-based approach to attributed graph clustering. In: Proceedings of the 12th IEEE International Conference on Data Mining, Brussels, 2012. 505-516&
[5]
Sachan M, Dubey A, Srivastava S, et al. Spatial compactness meets topical consistency: jointly modeling links and content for community detection. In: Proceedings of the 7th ACM International Conference on Web Search and Data Mining, New York, 2014. 503-512.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Sachan M, Dubey A, Srivastava S, et al. Spatial compactness meets topical consistency: jointly modeling links and content for community detection. In: Proceedings of the 7th ACM International Conference on Web Search and Data Mining, New York, 2014. 503-512&
[6]
Xin Y, Yang J, Xie Z Q. A semantic overlapping community detection algorithm based on semantic data fields. Sci Sin Inform, 2015, 45: 918-933 [辛宇, 杨静, 谢志强. 基于数据场分析的语义重叠社区发现算法. 中国科学: 信息科学, 2015, 45: 918-933].
Google Scholar
http://scholar.google.com/scholar_lookup?title=Xin Y, Yang J, Xie Z Q. A semantic overlapping community detection algorithm based on semantic data fields. Sci Sin Inform, 2015, 45: 918-933 [辛宇, 杨静, 谢志强. 基于数据场分析的语义重叠社区发现算法. 中国科学: 信息科学, 2015, 45: 918-933]&
[7]
Lee D D, Seung H S. Algorithms for nonnegative matrix factorization. In: Proceedings of the 14th International Conference on Neural Information Processing Systems, Cambridge, 2001. 556-562.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Lee D D, Seung H S. Algorithms for nonnegative matrix factorization. In: Proceedings of the 14th International Conference on Neural Information Processing Systems, Cambridge, 2001. 556-562&
[8]
Ding C, He X F, Simon H D. On the equivalence of nonnegative matrix factorization and spectral clustering. In: Proceedings of SIAM International Conference on Data Mining, Philadelphia, 2005. 606-610.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Ding C, He X F, Simon H D. On the equivalence of nonnegative matrix factorization and spectral clustering. In: Proceedings of SIAM International Conference on Data Mining, Philadelphia, 2005. 606-610&
[9]
Wang Y Y, Qian X N. Biological network clustering by robust NMF. In: Proceedings of the 5th ACM International Conference on Bioinformatics, Computational Biology and Biomedicine, New York, 2014. 688-689.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Wang Y Y, Qian X N. Biological network clustering by robust NMF. In: Proceedings of the 5th ACM International Conference on Bioinformatics, Computational Biology and Biomedicine, New York, 2014. 688-689&
[10]
Chan J, Liu W, Kan A, et al. Discovering latent block models in sparse and noisy graphs using non-negative matrix factorization. In: Proceedings of the 22th ACM International Conference on Information and Knowledge Management, New York, 2013. 811-816.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Chan J, Liu W, Kan A, et al. Discovering latent block models in sparse and noisy graphs using non-negative matrix factorization. In: Proceedings of the 22th ACM International Conference on Information and Knowledge Management, New York, 2013. 811-816&
[11]
Zhang Z Y. Community structure detection in social networks based on dictionary learning. Sci China Inf Sci, 2013, 56: 078103.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Zhang Z Y. Community structure detection in social networks based on dictionary learning. Sci China Inf Sci, 2013, 56: 078103&
[12]
Zhang
Z Y,
Wang
Y,
Ahn
Y Y.
Phys Rev E,
2013, 87: 062803-173
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?author=Zhang Z Y&author=Wang Y&author=Ahn Y Y&publication_year=2013&journal=Phys Rev E&volume=87&pages=062803-173
[13]
Dean J, Ghemawat S. MapReduce: simplified data processing on large clusters. Commun ACM, 2008, 51: 107-113.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Dean J, Ghemawat S. MapReduce: simplified data processing on large clusters. Commun ACM, 2008, 51: 107-113&
[14]
Dean J, Ghemawat S. MapReduce: a flexible data processing tool. Commun ACM, 2010, 53: 72-77.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Dean J, Ghemawat S. MapReduce: a flexible data processing tool. Commun ACM, 2010, 53: 72-77&
[15]
Kang U, Faloutsos C. Big graph mining: algorithms and discoveries. ACM SIGKDD Explor Newsl, 2012, 14: 29-36.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Kang U, Faloutsos C. Big graph mining: algorithms and discoveries. ACM SIGKDD Explor Newsl, 2012, 14: 29-36&
[16]
Rytsareva
I,
Chapman
T,
Kalyanaraman
A.
Int J High Perform Comput Netw,
2014, 7: 241-257
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?author=Rytsareva I&author=Chapman T&author=Kalyanaraman A&publication_year=2014&journal=Int J High Perform Comput Netw&volume=7&pages=241-257
[17]
Shi J, Xue W, Wang W, et al. Scalable community detection in massive social networks using MapReduce. IBM J Res Dev, 2013, 57: 1-14.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Shi J, Xue W, Wang W, et al. Scalable community detection in massive social networks using MapReduce. IBM J Res Dev, 2013, 57: 1-14&
[18]
Moon S, Lee J G, Kang M. Scalable community detection from networks by computing edge betweenness on MapReduce. In: Proceedings of the 1st International Conference on Big Data and Smart Computing, Bangkok, 2014. 145-148.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Moon S, Lee J G, Kang M. Scalable community detection from networks by computing edge betweenness on MapReduce. In: Proceedings of the 1st International Conference on Big Data and Smart Computing, Bangkok, 2014. 145-148&
[19]
Newman
M E,
Girvan
M.
Phys Rev E,
2004, 69: 026113-14
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?author=Newman M E&author=Girvan M&publication_year=2004&journal=Phys Rev E&volume=69&pages=026113-14
[20]
Ovelgönne M. Distributed community detection in web-scale networks. In: Proceedings of IEEE/ACM 5th International Conference on Advances in Social Networks Analysis and Mining, Niagara Falls, 2013. 66-73.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Ovelgönne M. Distributed community detection in web-scale networks. In: Proceedings of IEEE/ACM 5th International Conference on Advances in Social Networks Analysis and Mining, Niagara Falls, 2013. 66-73&
[21]
Su Y J, Hsu W L, Wun J C. Overlapping community detection with a maximal clique enumeration method in MapReduce. In: Proceeding of the 1st Euro-China Conference on Intelligent Data Analysis and Applications, Shenzhen, 2014. 367-376.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Su Y J, Hsu W L, Wun J C. Overlapping community detection with a maximal clique enumeration method in MapReduce. In: Proceeding of the 1st Euro-China Conference on Intelligent Data Analysis and Applications, Shenzhen, 2014. 367-376&
[22]
Xu W, Liu X, Gong Y H. Document clustering based on non-negative matrix factorization. In: Proceeding of the 13th ACM International Conference on Research on Development in Information Retrieval, Toronto, 2003. 267-273.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Xu W, Liu X, Gong Y H. Document clustering based on non-negative matrix factorization. In: Proceeding of the 13th ACM International Conference on Research on Development in Information Retrieval, Toronto, 2003. 267-273&
[23]
Lin
C J.
J Neural Comput,
2007, 19: 2756-2779
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?author=Lin C J&publication_year=2007&journal=J Neural Comput&volume=19&pages=2756-2779