logo

More info
  • AcceptedSep 29, 2015
  • PublishedJan 28, 2016

Abstract


References

[1] Shen C X, Zhang H G, Feng D G, et al. Information security survey. Sci China Ser E-Inf Sci, 2007, 37: 129-150 [沈 昌祥, 张焕国, 冯登国, 等. 信息安全综述. 中国科学E 辑: 信息科学, 2007, 37: 129-150]. Google Scholar

[2] Shen C X, Zhang H G, Feng D G, et al. Survey of information security. Sci China Ser E-Inf Sci, 2007, 50: 273-298. Google Scholar

[3] Zhang H G, Qin Z P. Introduction to Evolution Cryptology. Wuhan: Wuhan University Press, 2010 [张焕国, 覃中平. 演化密码引论. 武汉: 武汉大学出版社, 2010]. Google Scholar

[4] Zhang H G, Zhao B. Trusted Computing. Wuhan: Wuhan University Press, 2011 [张焕国, 赵波. 可信计算. 武汉: 武 汉大学出版社, 2011]. Google Scholar

[5] Daniel J B, Johannes B, Erik. Post Quantum Cryptology. Beijing: Tsinghua University Press, 2015 [张焕国, 王后珍, 杨昌, 等. 抗量子计算密码. 北京: 清华大学出版社, 2015]. Google Scholar

[6] Zhang H G, Guan H M, Wang H Z. Current research of post quantum cryptography. In: Cryptography Development Report of China. Beijing: Electronics Industry Press, 2011. 1-31 [张焕国, 管海明, 王后珍. 抗量子密码体制的研究 现状. 见: 中国密码学发展报告. 北京: 电子工业出版社, 2011. 1-31]. Google Scholar

[7] Information Security Professional Instruction Committee-Information Security Professional Specification Project Group. Information Security Majority Insructive Specification. Beijing: Tsinghua University Press, 2014 [信息安 全类专业教学指导委员会信息安全专业规范项目组. 信息安全专业指导性专业规范. 北京: 清华大学出版社, 2014]. Google Scholar

[8] Zhang H G, Du R Y, Fu J M, et al. Information security discipline. Netw Secur, 2014, 56: 619-620 [张焕国, 杜瑞颖, 傅建明, 等. 论信息安全学科. 网络安全, 2014, 56: 619-620]. Google Scholar

[9] Zhang H G, Wang L N, Du R Y, et al. Information security discipline system structure research. J Wuhan Univ, 2010, 56: 614-620 [张焕国, 王丽娜, 杜瑞颖, 等. 信息安全学科体系结构研究. 武汉大学学报理学版, 2010, 56: 614-620]. Google Scholar

[10] Bar-On A, Dinur I, Dunkelman O, et al. Cryptanalysis of SP networks with partial non-linear layers. In: Advances in Cryptology EUROCRYPT. Berlin: Springer, 2015. 315-342. Google Scholar

[11] Sun S W, Hu L, Wang P, et al. Automatic security evaluation and (related-key) differential characteristic search: application to SIMON, PRESENT, LBlock, DES(L) and other bit-oriented block ciphers. In: Advances in Cryptology ASIACRYPT. Berlin: Springer, 2014. 158-178. Google Scholar

[12] Emami S, Ling S, Nikoli04 I, et al. Low probability differentials and the cryptanalysis of full-round CLEFIA-128. In: Advances in Cryptology ASIACRYPT. Berlin: Springer, 2014. 141-157. Google Scholar

[13] Bogdanov A, Knudsen L R, Leander G, et al. PRESENT: an ultra-lightweight block cipher. In: Cryptographic Hardware and Embedded Systems-CHES. Berlin: Springer, 2007. 450-466. Google Scholar

[14] Wu W L, Zhang L. LBlock: a lightweight block cipher. In: Applied Cryptography and Network Security. Berlin: Springer, 2011. 327-344. Google Scholar

[15] Borghoff J, Canteaut A, Güneysu T, et al. PRINCE-a low-latency block cipher for pervasive computing applications. In: Advances in Cryptology ASIACRYPT. Berlin: Springer, 2012. 208-225. Google Scholar

[16] Albrecht M R, Benedikt D, Kavun E B, et al. Block ciphers-focus on the linear layer (feat. PRIDE). In: Advances in Cryptology CRYPTO. Berlin: Springer, 2014. 57-76. Google Scholar

[17] Gilbert H. A simplified representation of AES. In: Advances in Cryptology ASIACRYPT. Berlin: Springer, 2014. 200-222. Google Scholar

[18] Papakonstantinou P A, Yang G. Cryptography with streaming algorithms. In: Advances in Cryptology CRYPTO. Berlin: Springer, 2014. 55-70. Google Scholar

[19] Banegas G. Attacks in stream ciphers: a survey.. Google Scholar

[20] A˙ gren M, Löndahl C, Hell M, et al. A survey on fast correlation attacks. Cryptogr Commun, 2012, 4: 173-202. Google Scholar

[21] Hell M, Johansson T, Brynielsson L. An overview of distinguishing attacks on stream ciphers. cryptogr commun, 2009, 1: 71-94. Google Scholar

[22] Knellwolf S, Meier W. High order differential attacks on stream ciphers. Cryptogr Commun, 2012, 4: 203-215. Google Scholar

[23] Dinur I, Shamir A. Applying cube attacks to stream ciphers in realistic scenarios. Cryptogr Commun, 2012, 4: 217-232. Google Scholar

[24] Zhang J M, Qi W F, Tian T, et al. Further results on the decomposition of an NFSR into the cascade connection of an NFSR into an LFSR. IEEE Trans Inf Theory, 2015, 61: 645-654. Google Scholar

[25] Yang D, Qi W F, Zheng Q X. Further results on the distinctness of modulo 2 reductions of primitive sequences over Z=(232-1). Design Code Cryptogr, 2015, 74: 467-480. Google Scholar

[26] ETSI/SAGE TS 35.222-2011. Specification of the 3GPP Confidentiality and Integrity Algorithms 128-EEA3 and 128-EIA3. Document 2: ZUC Specification. Google Scholar

[27] Wang X Y, Yu H B, Yin Y L. Efficient collision search attacks on SHA-0. In: Advances in Cryptology-CRYPTO. Berlin: Springer, 2005. 1-16. Google Scholar

[28] Wang X Y, Yin Y L, Yu H B. Finding collisions in the full SHA-1. In: Advances in Cryptology-CRYPTO. Berlin: Springer, 2005. 17-36. Google Scholar

[29] Wang X Y, Lai X J, Feng D G, et al. Cryptanalysis of the hash functions MD4 and RIPEMD. In: Advances in Cryptology EUROCRYPT. Berlin: Springer, 2005. 1-18. Google Scholar

[30] Wang X Y, Yu H B. How to break MD5 and other hash functions. In: Advances in Cryptology EUROCRYPT, Berlin: Springer, 2005. 19-35. Google Scholar

[31] Jian G, Peyrin T, Yu S, et al. Updates on generic attacks against HMAC and NMAC. In: Advances in Cryptology-CRYPTO. Berlin: Springer, 2014. 131-148. Google Scholar

[32] Guo J, Sasaki Y, Wang L, et al. Cryptanalysis of HMAC/NMAC-Whirlpool. In: Advances in Cryptology-ASIACRYPT. Berlin: Springer, 2013. 21-40. Google Scholar

[33] Leurent G, Peyrin T, Wang L. New generic attacks against hash-based MACs. In: Advances in Cryptology-ASIACRYPT. Berlin: Springer, 2013. 1-20. Google Scholar

[34] Peyrin T, Yu S, Lei W. Generic related-key attacks for HMAC. In: Advances in Cryptology-ASIACRYPT. Berlin: Springer, 2012. 580-597. Google Scholar

[35] Catalano D, Fiore D. Practical homomorphic MACs for arithmetic circuits. In: Advances in Cryptology-EUROCRYPT. Berlin: Springer, 2013. 336-352. Google Scholar

[36] Cryptographic competitions,. Google Scholar

[37] Bogdanov A, Mendel F, Regazzoni F, et al. ALE: AES-based lightweight authenticated encryption. In: Fast Software Encryption. Berlin: Springer, 2014. 447-466. Google Scholar

[38] Bilgin B, Bogdanov A, Knězević M, et al. Fides: lightweight authenticated cipher with side-channel resistance for constrained hardware. In: Cryptographic Hardware and Embedded Systems-CHES. Berlin: Springer, 2013. 142-158. Google Scholar

[39] Hoang V T, Krovetz T, Rogaway P. Robust authenticated-encryption AEZ and the problem that it solves. In: Advances in Cryptology-EUROCRYPT. Berlin: Springer, 2015. 15-44. Google Scholar

[40] Sarkar P. Modes of operations for encryption and authentication using stream ciphers supporting an initialisation vector. Cryptogr Commun, 2014, 6: 189-231. Google Scholar

[41] Lu X H, Li B, Jia D D. KDM-CCA security from RKA secure authenticated encryption. In: Advances in Cryptology-EUROCRYPT. Berlin: Springer, 2015. 559-583. Google Scholar

[42] Joo C H, Yun A. Homomorphic authenticated encryption secure against chosen-ciphertext attack. In: Advances in Cryptology-ASIACRYPT. Berlin: Springer, 2014. 173-192. Google Scholar

[43] Andreeva E, Bogdanov A, Luykx A, et al. How to securely release unverified plaintext in authenticated encryption. In: Advances in Cryptology-ASIACRYPT. Berlin: Springer, 2014. 105-125. Google Scholar

[44] Wu S, Wu H, Huang T, et al. Leaked-state-forgery attack against the authenticated encryption algorithm ALE. In: Advances in Cryptology-ASIACRYPT. Berlin: Springer, 2013. 377-404. Google Scholar

[45] Dinur I, Jean J. Cryptanalysis of FIDES. In: Fast Software Encryption. Berlin: Springer, 2014. 224-240. Google Scholar

[46] Nandi M. Forging attacks on two authenticated encryption schemes COBRA and POET. In: Advances in Cryptology-ASIACRYPT. Berlin: Springer, 2014. 126-140. Google Scholar

[47] Wang P, Wu W L, Zhang L T. Cryptanalysis of the OKH authenticated encryption scheme. In: Information Security Practice and Experience. Berlin: Springer, 2013. 353-360. Google Scholar

[48] Shamir A. Identity-based cryptosystems and signature schemes. In: Proceedings of CRYPTO 84 on Advances in Cryptology. Berlin: Springer, 1985. 47-53. Google Scholar

[49] Boneh D, Franklin F. Identity-based encryption from the Wail pairing. In: Advances in Cryptology CRYPTO. Berlin: Springer, 2001, 32: 586-615. Google Scholar

[50] Dan B, Boyen X, Goh E J. Hierarchical identity based encryption with constant size ciphertext. In: Advances in Cryptology EUROCRYPT. Berlin: Springer, 2005. 440-456. Google Scholar

[51] Waters B. Efficient identity-based encryption without random oracles. In: Advances in Cryptology EUROCRYPT. Berlin: Springer, 2005. 114-127. Google Scholar

[52] Ducas L, Lyubashevsky V, Prest T. Efficient identity-based encryption over NTRU lattices. In: Advances in Cryptology ASIACRYPT. Berlin: Springer, 2014. 22-41. Google Scholar

[53] Blazy O, Kiltz E, Pan J. (Hierarchical) Identity-based encryption from affine message authentication. In: Advances in Cryptology CRYPTO. Berlin: Springer, 2014. 408-425. Google Scholar

[54] Al-Riyami S S, Paterson K G. Certificateless public key cryptography. In: Advances in Cryptology ASIACRYPT. Berlin: Springer, 2003. 452-473. Google Scholar

[55] Dan B, Gentry C, Waters B. Collusion resistant broadcast encryption with short ciphertexts and private keys. In: Advances in Cryptology CRYPTO. Berlin: Springer, 2005. 258-275. Google Scholar

[56] Dan B, Waters B, Zhandry M. Low overhead broadcast encryption from multilinear maps. In: Advances in Cryptology CRYPTO. Berlin: Springer, 2014. 206-223. Google Scholar

[57] Sahai A, Waters B. Fuzzy identity-based encryption. In: Advances in Cryptology EUROCRYPT. Berlin: Springer, 2005. 457-473. Google Scholar

[58] Goyal V, Pandey O, Sahai A, et al. Attribute-based encryption for fine-grained access control of encrypted data. In: Proceedings of the 13th ACM Conference on Computer and Communications Security. New York: ACM, 2006. 89-98. Google Scholar

[59] Bethencourt J, Sahai A, Waters B. Ciphertext-policy attribute-based encryption. In: Proceedings of the 2007 IEEE Symposium on Security and Privacy Computer Society, Berkeley, 2007. 321-334. Google Scholar

[60] Chen J, Gay R, Wee H. Improved dual system ABE in prime-order groups via predicate encodings. In: Advances in Cryptology EUROCRYPT. Berlin: Springer, 2015. 595-624. Google Scholar

[61] Garg S, Gentry C, Sahai A, et al. Witness encryption and its applications. In: Proceedings of the 45th Annual ACM Symposium on Theory of Computing. New York: ACM, 2013. 467-476. Google Scholar

[62] Gentry C, Lewko A B, Waters B. Witness encryption from instance independent assumptions. In: Advances in Cryptology CRYPTO. Berlin: Springer, 2014. 426-443. Google Scholar

[63] Waters B. Functional encryption: origins and recent developments. In: Public-Key Cryptography PKC. Berlin: Springer, 2013. 51-54. Google Scholar

[64] Barbosa M, Farshim P. On the semantic security of functional encryption schemes. In: Public-Key Cryptography PKC. Berlin: Springer, 2013. 143-161. Google Scholar

[65] Farràs O, Hansen T, Kaced T, et al. Optimal non-perfect uniform secret sharing schemes. In: Advances in Cryptology CRYPTO. Berlin: Springer, 2014. 217-234. Google Scholar

[66] Boyle E, Gilboa N, Ishai Y. Function secret sharing. In: Advances in Cryptology EUROCRYPT. Berlin: Springer, 2015. 337-367. Google Scholar

[67] Jarecki S, Kiayias A, Krawczyk H. Round-optimal password-protected secret sharing and t-pake in the password-only model. In: Advances in Cryptology ASIACRYPT. Berlin: Springer, 2014. 233-253. Google Scholar

[68] Cramer R, Damgard I B, Döttling N, et al. Linear secret sharing schemes from error correcting codes and universal hash functions. In: Advances in Cryptology EUROCRYPT. Berlin: Springer, 2015. 313-336. Google Scholar

[69] Goldwasser S, Micali S, Rackoff C. The knowledge complexity of interactive proof-systems. In: Proceedings of the 17th Annual ACM Symposium on Theory of Computing. New York: ACM, 1985. 291-304. Google Scholar

[70] De Santis A, Micali S, Persiano G. Non-interactive zero-knowledge proof systems. In: Advances in Cryptology CRYPTO. Berlin: Springer, 1988. 52-72. Google Scholar

[71] BFM M B, Feldman P, Micali S. Non-interactive zero-knowledge proof systems and applications. In: Proceedings of the 20th Annual Symposium on Theory of Computing. New York: ACM, 1988. 103-112. Google Scholar

[72] Deng Y, Lin D D. Instance-dependent verifiable random functions and their application to simultaneous resettability. In: Advances in Cryptology EUROCRYPT. Berlin: Springer, 2007. 148-168. Google Scholar

[73] Deng Y, Goyal V, Sahai A. Resolving the simultaneous resettability conjecture and a new non-black-box simulation strategy. In: 50th Annual IEEE Symposium on Foundations of Computer Science (FOCS’09), Atlanta, 2009. 251-260. Google Scholar

[74] Yao C C, Yung M, Zhao Y L. Concurrent Knowledge Extraction in Public-Key Models. J Cryptology, in press, doi:10.1007/s00145-014-9191-z. Google Scholar

[75] Goyal V, Jain A, Ostrovsky R, et al. Constant-round concurrent zero knowledge in the bounded player model. In: Advances in Cryptology ASIACRYPT. Berlin: Springer, 2013. 21-40. Google Scholar

[76] Unruh D. Non-interactive zero-knowledge proofs in the quantum random oracle model. In: Advances in Cryptology EUROCRYPT. Berlin: Springer, 2015. 755-784. Google Scholar

[77] Kiltz E, Wee H. Quasi-adaptive nizk for linear subspaces revisited. In: Advances in Cryptology EUROCRYPT. Berlin: Springer, 2015. 101-128. Google Scholar

[78] Yao A. Protocols for secure computations. FOCS. 1982, 82: 160-164. Google Scholar

[79] Goldreich O, Micali S, Wigderson A. How to play any mental game. In: Proceedings of the 19th Annual ACM Symposium on Theory of Computing. New York: ACM, 1987. 218-229. Google Scholar

[80] Garay J, Kiayias A, Leonardos N. The bitcoin backbone protocol: analysis and applications. In: Advances in Cryptology EUROCRYPT. Berlin: Springer, 2015. 281-310. Google Scholar

[81] Asharov G, Lindell Y, Schneider T, et al. More efficient oblivious transfer extensions with security for malicious adversaries. In: Advances in Cryptology EUROCRYPT. Berlin: Springer, 2015. 673-701. Google Scholar

[82] Goldwasser S. Multi party computations: past and present. In: Proceedings of the 16th Annual ACM Symposium on Principles of Distributed Computing. New York: ACM, 1997. 1-6. Google Scholar

[83] Kiyoshima S. Round-efficient black-box construction of composable multi-party computation. In: Advances in Cryptology-CRYPTO. Berlin: Springer, 2014. 351-368. Google Scholar

[84] Ishai Y, Ostrovsky R, Zikas V. Secure multi-party computation with identifiable abort. In: Advances in Cryptology CRYPTO. Berlin: Springer, 2014. 369-386. Google Scholar

[85] Beimel A, Gabizon A, Ishai Y, et al. Non-interactive secure multiparty computation. In: Advances in Cryptology CRYPTO. Berlin: Springer, 2014. 387-404. Google Scholar

[86] Wang C, Ren K, Wang J. Secure and practical outsourcing of linear programming in cloud computing. In: Proceedings of IEEE INFOCOM’11, Shanghai, 2011. 820-828. Google Scholar

[87] Gentry C, Halevi S, Raykova M, et al. Outsourcing private ram computation. In: IEEE 55th Annual Symposium on Foundations of Computer Science (FOCS), Philadelphia, 2014. 404-413. Google Scholar

[88] Sheng B, Li Q. Verifiable privacy-preserving sensor network storage for range query. IEEE Trans Mobile Comput, 2011, 10: 1312-1326. Google Scholar

[89] Cui H, Mu Y, Au M H. Proof of retrievability with public verifiability resilient against related-key attacks. IET Inform Secur, 2014, 9: 43-49. Google Scholar

[90] Kocher P C. Timing attacks on implementations of diffie-hellman, RSA, DSS, and other systems. In: Advances in Cryptology CRYPTO. Berlin: Springer, 1996. 104-113. Google Scholar

[91] Kelsey J, Schneier B,Wagner D, et al. Side channel cryptanalysis of product ciphers. In: Computer Security ESORICS. Berlin: Springer, 1998. 97-110. Google Scholar

[92] Dhem J F, Koeune F, Leroux P A, et al. A practical implementation of the timing attack. In: Smart Card Research and Applications. Berlin: Springer, 2000. 167-182. Google Scholar

[93] Boneh D, DeMillo R A, Lipton R J. On the importance of checking cryptographic protocols for faults. In: Advances in Cryptology EUROCRYPT. Berlin: Springer, 1997. 37-51. Google Scholar

[94] Joye M, Lenstra A K, Quisquater J J. Chinese remaindering based cryptosystems in the presence of faults. J Cryptol, 1999, 12: 241-245. Google Scholar

[95] Kocher P, Jaffe J, Jun B. Differential power analysis. In: Advances in Cryptology CRYPTO. Berlin: Springer, 1999. 388-397. Google Scholar

[96] Quisquater J J, Samyde D. A new tool for non-intrusive analysis of smart cards based on electromagnetic emissions. In: Eurocrypt 2000 Rump Session, Bruges (Brugge), 2000. Google Scholar

[97] Gandolfi K, Mourtel C, Olivier F. Electromagnetic analysis: concrete results. In: Cryptographic Hardware and Embedded Systems-CHES. Berlin: Springer, 2001. 251-261. Google Scholar

[98] Belaid S, Fouque P A, Gérard B. Side-Channel Analysis of Multiplications in GF(2128). In: Advances in Cryptology ASIACRYPT. Berlin: Springer, 2014. 306-325. Google Scholar

[99] LomnéV, Prouff E, Roche T. Behind the scene of side channel attacks. In: Advances in Cryptology ASIACRYPT. Berlin: Springer, 2013. 506-525. Google Scholar

[100] Petit C, Standaert F X, Pereira O, et al. A block cipher based pseudo random number generator secure against side-channel key recovery. In: Proceedings of the ACM Symposium on Information Computer and Communications Security. New York: ACM, 2008. 56-65. Google Scholar