logo

SCIENTIA SINICA Informationis, Volume 46 , Issue 7 : 883-898(2016) https://doi.org/10.1360/N112015-00152

Linear reconstruction method for 3D non-rigid based on trajectory basis

More info
  • ReceivedDec 14, 2015
  • AcceptedJan 24, 2016

Abstract


Funded by

国家自然科学基金(61402274)

国家自然科学基金(41471280)

国家自然科学基金(61461025)

国家自然科学基金(61202314)

国家自然科学基金(U1504610)

陕西省重点科技创新团队计划项目(2014KTC-18)

陕西师范大学中央高校基本科研业务费项目(GK201402040)

中国博士后特别资助项目(2014T- 70937)


References

[1] Noguer F, Fua P. Stochastic exploration of ambiguities for nonrigid shape recovery. IEEE Trans Pattern Anal Mach Intell, 2013, 35: 463-475 CrossRef Google Scholar

[2] Lee M, Choi C. Real-time facial shape recovery from a single image under general, unknown lighting by rank relaxation. Comput Vis Image Underst, 2014, 120: 59-69 CrossRef Google Scholar

[3] Orghidan R, Salvi J, Gordan M, et al. Structured light self-calibration with vanishing points. Mach Vision Appl, 2014, 25: 489-500 CrossRef Google Scholar

[4] Tomasi C, Kanade T. Shape and motion from image streams under orthography: a factorization method. Int J Comput Vis, 1992, 9: 137-154 CrossRef Google Scholar

[5] Bregler C, Hertzmann A, Biermann H. Recovering non-rigid 3D shape from image streams. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Hilton Head Island, 2000, 2: 690-696. Google Scholar

[6] Agudo A, Agapito L, Calvo B, et al. Good vibrations: a modal analysis approach for sequential non-rigid structure from motion. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Columbus, 2014. 1558-1565. Google Scholar

[7] Zhou Z, Shi F, Xiao J, et al. Non-rigid structure-from-motion on degenerate deformations with low-rank shape deformation model. IEEE Trans Multimed, 2015, 17: 171-185 CrossRef Google Scholar

[8] Alessio D. Adaptive non-rigid registration and structure from motion from image trajectories. Int J Comput Vis, 2013, 103: 226-239 CrossRef Google Scholar

[9] Xiao J, Chai J, Kanade T. A closed-form solution to non-rigid shape and motion recovery. Int J Comput Vis, 2006, 67: 233-246 CrossRef Google Scholar

[10] Hartley R, Vidal R. Perspective nonrigid shape and motion recovery. In: Proceedings of the 10th European Conference on Computer Vision, Marseille, 2008. 276-289. Google Scholar

[11] Xiao J, Kanade T. Uncalibrated perspective reconstruction of deformable structures. In: Proceedings of IEEE International Conference on Computer Vision, Beijing, 2005. 1075-1082. Google Scholar

[12] Tao L, Matuszewski B. Non-rigid structure from motion with diffusion maps prior. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Portland, 2013. 1530-1537. Google Scholar

[13] Bue A, Llado X, Agapito L. Non-rigid metric shape and motion recovery from uncalibrated images using priors. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, New York, 2006. 1191-1198. Google Scholar

[14] Rehan A, Zaheer A, Akhter I, et al. NRSfM using local rigidity. In: Proceedings of IEEE Winter Conference on Applications of Computer Vision, Steamboat Springs, 2014. 69-74. Google Scholar

[15] Dai Y C, Li H C, He M Y. A simple prior-free method for non-rigid structure-from-motion factorization. Int J Comput Vis, 2014, 107: 101-122 CrossRef Google Scholar

[16] Akhter I, Simon T, Khan S, et al. Bilinear spatiotemporal basis models. ACM Trans Graph, 2012, 31: 1-12. Google Scholar

[17] Stankovic S, Falkowski J. The Haar wavelet transform: its status and achievements. Comput Elec Eng, 2003, 29: 25-44 CrossRef Google Scholar

[18] Heyden A, Berthilsson R, Sparr G. An iterative factorization method for projective structure and motion from image sequences. Image Vis Comput, 1999, 17: 981-991 CrossRef Google Scholar

[19] Peng Y L, Liu S G, Qiu G Y. A linearly iterative method for non-rigid projective reconstruction. J Xi'an Jiaotong Univ, 2015, 49: 102-106 [彭亚丽, 刘侍刚, 裘国永. 一种线性迭代非刚体射影重建方法. 西安交通大学学报, 2015, 49: 102-106]. Google Scholar

[20] Nocedal J, Wright S. Numerical Optimization. 2nd ed. Berlin: Springer, 2006, 421-447. Google Scholar