SCIENTIA SINICA Informationis, Volume 46 , Issue 7 : 870-882(2016) https://doi.org/10.1360/N112015-00136

Structure learning in graphical models incorporating the scale-free prior

More info
  • ReceivedOct 7, 2015
  • AcceptedNov 26, 2015


Funded by




[1] Barabási A L, Albert R. Statistical mechanics of complex networks. Rev Mod Phys, 2002, 74: 47-97 CrossRef Google Scholar

[2] Ewards D M. Introduction to Graphical Modelling. New York: Springer, 2000. Google Scholar

[3] Dempster A P. Covariance selection. Biometrika, 1972, 32: 95-108. Google Scholar

[4] Tibshirani R. Regression shrinkage and selection via the lasso. J Royal Stat Soc B, 1996, 58: 267-288. Google Scholar

[5] Meinshausen N, Bühlmann P. High-dimensional graphs with the lasso. Ann Statist, 2006, 34: 1436-1462 CrossRef Google Scholar

[6] Yuan M, Lin Y. Model selection and estimation in the Gaussian graphical model. Biometrika, 2007, 94: 19-35 CrossRef Google Scholar

[7] Friedman J, Hastie T, Tibshirani R. Sparse inverse covariance estimation with the graphical lasso. Biostat, 2008, 9: 432-441 CrossRef Google Scholar

[8] Ravikumar P, Raskutti G, Wainwright M J, et al. High-dimensional covariance estimation by minimizing $L_1$-penalized log-determinant. Electron J Stat, 2011, 5: 935-980 CrossRef Google Scholar

[9] Peng J, Wang P, Zhou N, et al. Partial correlation estimation by joint sparse regression models. J Am Statist Assoc, 2009, 104: 735-746 CrossRef Google Scholar

[10] Hero A, Rajaratnam B. Hub discovery in partial correlation graphs. IEEE Trans Inf Theory, 2012, 58: 6064-6078 CrossRef Google Scholar

[11] Tan K M, London P, Mohan K, et al. Learning graphical models with hubs. J Mach Learn Res, 2014, 15: 3297-3331. Google Scholar

[12] Liu Q, Ihler A T. Learning scale free networks by reweighed $L_1$ regularization. In: Proceedings of the 14th International Conference on Artificial Intelligence and Statistics, Fort Lauderdale, 2011. 15: 40-48. Google Scholar

[13] Knight K, Fu W J. Asymptotics for lasso-type estimators. Ann Statist, 2000, 28: 1356-1378 CrossRef Google Scholar

[14] Fan J Q, Li R Z. Variable selection via nonconcave penalized likelihood and its oracle properties. J Am Statist Assoc, 2001, 96: 1348-1360 CrossRef Google Scholar

[15] Huang J, Horowitz J L, Ma S. Asymptotic properties of bridge estimators in sparse high-dimensional regression models. Ann Statist, 2008, 36: 587-613 CrossRef Google Scholar

[16] Zhang H, Wang Y, Chang X Y, et al. $L_{1/2}$ regularization. Sci Sin Inform, 2010, 40: 412-422 [张海, 王尧, 常象宇, 等. $L_{1/2}$正则化. 中国科学: 信息科学, 2010, 40: 412-422]. Google Scholar

[17] Lange K, Hunter D, Yang I. Optimization transfer using surrogate objective functions (with discussion). J Comput Graph Statist, 2000, 9: 1-59. Google Scholar

[18] Witten D, Friedman J H, Simon N. New insights and faster computations for the graphical lasso. J Comput Graph Statist, 2011, 20: 892-900 CrossRef Google Scholar

[19] van der Vaart A W. Asymptotic Statistics. New York: Cambridge University Press, 1998. 61-67. Google Scholar

[20] Geyer C. On the asymptotics of constrainted M-estimation. Ann Statist, 1994, 22: 1993-2010 CrossRef Google Scholar

[21] Zou H, Li R Z. One-step sparse estimates in nonconcave penalized likelihood models. Ann Statist, 2008, 36: 1509-1533 CrossRef Google Scholar

[22] Barabási A L, Albert R. Emergence of scaling in random networks. Science, 1999, 286: 509-512 CrossRef Google Scholar

[23] Spellman P T, Sherlock G, Zhang M Q, et al. Comprehensive identification of cell cycleregulated genes of the yeast saccharomyces cerevisiae by microarray hybridization. Mol Biol Cell, 1998, 9: 3273-3297 CrossRef Google Scholar

[24] Chen G, Larsen P, Almasri E, et al. Rank-based edge reconstruction for scale-free genetic regulatory networks. BMC Bioinformatics, 2008, 9: 75-3297 CrossRef Google Scholar

[25] Ravikumar P, Wainwright M J, Lafferty J D. High-dimensional Ising model selection using $l_1$-regularized logistic regression. Ann Statist, 2010, 38: 1287-1319 CrossRef Google Scholar

[26] Chen S, Witten D, Shojaie A. Selection and estimation for mixed graphical models. Biometrika, 2015, 102: 47-64 CrossRef Google Scholar

[27] Zhang L J, Zhang H. Joint estimation of multiple graphical models via bridge. Appl Math: J Chinese Univ (Ser A), 2014, 92: 127-137 [张凌洁, 张海. 多图模型的联合估计的群桥方法. 高校应用数学学报, 2014, 92: 127-137]. Google Scholar