logo

SCIENTIA SINICA Informationis, Volume 46 , Issue 6 : 677-697(2016) https://doi.org/10.1360/N112014-00252

A new paradigm for personalized mashup recommendation based on dynamic contexts in mobile computing environments

More info
  • ReceivedJun 17, 2015
  • AcceptedAug 20, 2015
  • PublishedMay 26, 2016

Abstract


Funded by

国家自然科学基金(61572295)

国家自然科学基金(61303085)

科技部创新方法专项(SQ2015IMC600006)

山东省自然科学基金(ZR2014FM031)

山东省自然科学基金(ZR2013FQ014)


References

[1] Elmeleegy H, Ivan A, Akkiraju R, et al. Mashup advisor: a recommendation tool for mashup development. In: Proceedings of the IEEE International Conference on Web Services. New York: IEEE, 2008. 337-344. Google Scholar

[2] Greenshpan O, Milo T, Polyzotis N. Autocompletion for mashups. In: Proceedings of the VLDB Endowment. Lyon: ACM, 2009. 538-549. Google Scholar

[3] Picozzi M, Rodolfi M, Cappiello C, et al. Quality-based recommendations for Mashup composition. In: Proceedings of the 10th International Conference on Web Engineering. Berlin: Springer, 2010. 360-371. Google Scholar

[4] Bianchini D, De Antonellis V, Melchiori M. Semantics-enriched web APIs selection for enterprise Mashup development. In: Information Systems: Crossroads for Organization, Management, Accounting and Engineering. Berlin: Springer, 2012. 95-103. Google Scholar

[5] Ngu A H H, Carlson M P, Sheng Q Z, et al. IEEE Trans Serv Comput, 2010, 3: 2-15 CrossRef Google Scholar

[6] Zheng Z, Ma H, Lyu M R, et al. IEEE Trans Serv Comput, 2011, 4: 140-152 CrossRef Google Scholar

[7] Maaradji A, Hacid H, Skraba R, et al. Social-based web services discovery and composition for step-by-step Mashup completion. In: Proceedings of the IEEE International Conference on Web Services. New York: IEEE, 2011. 700-701. Google Scholar

[8] Cao B, Liu J, Tang M, et al. Mashup service recommendation based on user interest and social network. In: Proceedings of the IEEE International Conference on Web Services. New York: IEEE, 2013. 99-106. Google Scholar

[9] Medjahed B, Atif Y. Context-based matching for web service composition. Distrib Parall Databases, 2007, 21: 5-37. Google Scholar

[10] Beltran V, Arabshian K, Schulzrinne H. Ontology-based user-defined rules and context-aware service composition system. In: Proceedings of the Semantic Web: ESWC Workshops. Berlin: Springer, 2012. 139-155. Google Scholar

[11] Zhou J, Gilman E, Palola J, et al. Pers Ubiquit Comput, 2011, 15: 291-303 CrossRef Google Scholar

[12] Mokhtar S, Fournier D, Georgantas N, et al. Context-aware service composition in pervasive computing environments. In: Proceedings of the 2nd International Workshop, RISE 2005. Berlin: Springer, 2006. 129-144. Google Scholar

[13] Niu W, Li G, Tang H, et al. J Netw Comput Appl, 2011, 34: 1757-1770 CrossRef Google Scholar

[14] Sirin E, Parsia B, Wu D, et al. J Web Semant, 2004, 1: 377-396 CrossRef Google Scholar

[15] Adomavicius G, Tuzhilin A. Context-aware recommender systems. In: Recommender Systems Handbook. Berlin: Springer, 2011. 217-253. Google Scholar

[16] Sheth A P, Gomadam K, Lathem J. IEEE Internet Comput, 2007, 11: 91-94 CrossRef Google Scholar

[17] Good N, Schafer J B, Konstan J A, et al. Combining collaborative filtering with personal agents for better recommendations. In: Proceedings of the 16th National Conference on Artificial Intelligence. Menlo Park: AAAI, 1999. 439-446. Google Scholar

[18] Li T, He W, Cui L Z, et al. Autonomous constructor of process based on personalized characteristics and preferences. Comput Integr Manuf Syst, 2013, 19: 1906-1912 [李婷, 何伟, 崔立真, 等. 基于用户偏好的个性化流程自主构建方法. 计算机集成制造系统, 2013, 19: 1906-1912]. Google Scholar

[19] Platzer C, Rosenberg F, Dustdar S. Web service clustering using multidimensional angles as proximity measures. ACM Trans Internet Tech, 2009, 9: 1-26. Google Scholar

[20] Sun P, Jiang C J. Using service clustering to facilitate process-oriented semantic web service discovery. Chinese J Comput, 2008, 31: 1340-1353 [孙萍, 蒋昌俊. 利用服务聚类优化面向过程模型的语义Web服务发现. 计算机学报, 2008, 31: 1340-1353]. Google Scholar

[21] Xu M, Cui L Z, Li Q Z. An extended graph-planning based Top-K service composition method. Acta Electron Sinica, 2012, 40: 1404-1409 [徐猛, 崔立真, 李庆忠. 基于扩展图规划的Top-K服务组合方法研究. 电子学报, 2012, 40: 1404-1409]. Google Scholar

[22] Hatzi O, Vrakas D, Nikolaidou M, et al. IEEE Trans Serv Comput, 2012, 5: 319-332 CrossRef Google Scholar

[23] Chen X, Zheng Z, Liu X, et al. IEEE Trans Serv Comput, 2013, 6: 35-47 CrossRef Google Scholar

[24] Truong H L, Dustdar S. Int J Web Inf Syst, 2009, 5: 5-31 CrossRef Google Scholar

[25] Wang J, Zeng C, He C, et al. Context-aware role mining for mobile service recommendation. In: Proceedings of the 27th Annual ACM Symposium on Applied Computing. New York: ACM, 2012. 173-178. Google Scholar

[26] Hussein M, Han J, Yu J, et al. Scenario-based validation of requirements for context-aware adaptive services. In: Proceedings of the IEEE International Conference on Web Services. New York: IEEE, 2013. 348-355. Google Scholar

[27] Meng S, Dou W, Zhang X, et al. IEEE Trans Parall Distrib Syst, 2014, 25: 3221-3231 CrossRef Google Scholar

[28] Shin D, Lee J, Yeon J, et al. Context-aware recommendation by aggregating user context. In: Proceedings of the IEEE Conference on Commerce and Enterprise Computing. New York: IEEE, 2009. 423-430. Google Scholar

[29] Karatzoglou A, Amatriain X, Baltrunas L, et al. Multiverse recommendation: n-dimensional tensor factorization for context-aware collaborative filtering. In: Proceedings of the 4th ACM Conference on Recommender Systems. New York: ACM, 2010. 79-86. Google Scholar

[30] Gao M, Wu Z. Personalized context-aware collaborative filtering based on neural network and slope one. In: Proceedings of the International Conference on Cooperative Design, Visualization, and Engineering. Berlin: Springer, 2009. 109-116. Google Scholar

[31] Chen A. Context-aware collaborative filtering system: predicting the user's preference in the ubiquitous computing environment. In: Proceedings of the 1st International Workshop on Location- and Context-Awareness. Berlin: Springer, 2005. 244-253. Google Scholar

[32] Ning D, He K Q, Peng R, et al. An automatic emerging approach for web service semantics based on social tagging. Chinese J Comput, 2011, 34: 2414-2426 [宁达, 何克清, 彭蓉, 等. 基于社会标注的 Web 服务语义自动浮现方法. 计算机学报, 2011, 34: 2414-2426]. Google Scholar

[33] Deng S G, Huang L T, Wu B, et al. QoS optimal automatic composition of semantic web services. Chinese J Comput, 2013, 36: 1015-1030 [邓水光, 黄龙涛, 吴斌, 等. 一种 QoS 最优的语义 Web 服务自动组合方法. 计算机学报, 2013, 36: 1015-1030]. Google Scholar

[34] Pan W F, Li B, Shao B, et al. Service classification and recommendation based on software networks. Chinese J Comput, 2011, 34: 2355-2369 [潘伟丰, 李兵, 邵波, 等. 基于软件网络的服务自动分类和推荐方法研究. 计算机学报, 2011, 34: 2355-2369]. Google Scholar