logo

SCIENTIA SINICA Terrae, Volume 51 , Issue 10 : 1773-1787(2021) https://doi.org/10.1360/N072020-0417

滇东志留系-泥盆系界线与肺鱼-四足动物分歧点的最小时间约束

赵文金 1,2,3,†, 张晓林 4,†, 贾国东 5, 沈延安 4, 朱敏 1,2,3,*
More info
  • ReceivedDec 24, 2020
  • AcceptedMay 20, 2021
  • PublishedJul 23, 2021

Abstract


Funded by

中国科学院战略性先导科技专项项目(XDB26000000,XDA19050102)

国家自然科学基金项目(42072026,41972006,41530102)

中国科学院前沿科学重点研究项目(QYZDJ-SSW-DQC002)


Acknowledgment

潘照晖、张杰、崔心东、蔡家琛、王建华先后参加了野外工作, 朱幼安对地球化学样品做了前期处理和部分测试, Brian CHOO改进了本文对应的英文稿, 匿名审稿人提出建设性的意见和建议, 在此一并表示感谢.


References

[1] 蔡家琛, 赵文金, 朱敏. 2020. 云南曲靖志留纪含鱼地层关底组的划分与时代. 古脊椎动物学报, 58: 249–266. Google Scholar

[2] 蔡重阳, 方宗杰, 李星学, 王怿, 耿良玉, 高联达, 王念忠, 李代芸, 刘仲衡. 1994. 滇东早、中泥盆世海陆过渡相生物地层学研究. 中国科学B辑, 24: 634–639. Google Scholar

[3] 曾允孚, 陈洪德, 张锦泉, 刘文均. 1992. 华南泥盆纪沉积盆地类型和主要特征. 沉积学报, 10: 14–113. Google Scholar

[4] 单卫国, 罗刚, 巫正国. 1997. 滇东曲靖地区志留系层序地层特征和年代地层界线再讨论. 地层学杂志, 21: 68–76. Google Scholar

[5] 单卫国, 王明伟. 2000. 地层对比中层序地层学理论的运用——以滇东中下泥盆统为例. 地层学杂志, 24: 156–162. Google Scholar

[6] 董榕生. 1992. 中国南方大地构造演化及泥盆纪古构造格局. 成都地质学院学报, 19: 58–64. Google Scholar

[7] 范德江, 刘仲衡. 1995. 滇东非海相泥盆纪地层研究——滇东曲靖晚志留世-早泥盆世早期的沉积环境. 青岛海洋大学学报, 25: 239–246. Google Scholar

[8] 方润森, 江能人, 范健才, 曹仁关, 李代芸, 等. 1985. 云南曲靖地区中志留世-早泥盆世地层及古生物. 昆明: 云南人民出版社. 1–171. Google Scholar

[9] 方宗杰, 蔡重阳, 王怿, 李星学, 王成源, 耿良玉, 王尚启, 高联达, 王念忠, 李代芸. 1994. 滇东曲靖志留-泥盆系界线研究的新进展. 地层学杂志, 18: 81–90. Google Scholar

[10] 黄冰, 戎嘉余, 王怿. 2011. 黔西赫章志留纪晚期小莱采贝动物群的发现及其古地理意义. 古地理学报, 13: 30–36. Google Scholar

[11] 李星学, 蔡重阳. 1978. 西南地区早泥盆世地层的一个标准剖面及其植物组合的划分与对比. 地质学报, 52: 1–14. Google Scholar

[12] 罗惠麟, 余家祯, 龙鹏光. 1985. 云南东部上志留统三叶虫序列兼论志留系-泥盆系界线. 地层学杂志, 9: 220–223. Google Scholar

[13] 梅冥相, 曾萍, 初汉明, 刘智荣, 李东海, 孟庆芬, 易定红. 2004. 滇黔桂盆地及邻区泥盆纪层序地层格架及其古地理背景. 吉林大学学报(地球科学版), 34: 546–554. Google Scholar

[14] 南君亚, 刘育燕. 2004. 浙江煤山二叠-三叠系界线剖面有机和无机碳同位素变化与古环境. 地球化学, 33: 9–19. Google Scholar

[15] 欧阳舒, 卢礼昌, 朱怀诚, 刘锋. 2017. 中国晚古生代孢粉化石. 合肥: 中国科学技术大学出版社. 1–1092. Google Scholar

[16] 郄文昆, 马学平, 徐洪河, 乔丽, 梁昆, 郭文, 宋俊俊, 陈波, 卢建峰. 2019. 中国泥盆纪综合地层和时间框架. 中国科学: 地球科学, 49: 115–138. Google Scholar

[17] 戎嘉余, 王怿, 詹仁斌, 樊隽轩, 黄冰, 唐鹏, 李越, 张小乐, 吴荣昌, 王光旭, 魏鑫. 2019. 中国志留纪综合地层和时间框架. 中国科学: 地球科学, 49: 93–114. Google Scholar

[18] 戎嘉余, 陈旭, 王成源, 耿良玉, 伍鸿基, 邓占球, 陈挺恩, 徐均涛. 1990. 论华南志留系对比的若干问题. 地层学杂志, 14: 161–177. Google Scholar

[19] 王成源. 1981. 云南曲靖玉龙寺组时代的新认识. 地层学杂志, 5: 240, 196. Google Scholar

[20] 王成源. 1998. 华南志留系红层的时代. 地层学杂志, 22: 127–128. Google Scholar

[21] 王建华, 赵文金, 朱敏, 李强, 蔡家琛, 张娜, 彭礼健, 罗彦超. 2020. 云南曲靖刘家冲剖面关底组中的鱼类微体化石及其地层学意义. 地学前缘, 27: 329–340. Google Scholar

[22] 王俊卿. 2000. 玉龙寺组的时代——兼论滇东的志留系-泥盆系界线. 地层学杂志, 24: 144–150. Google Scholar

[23] 王念忠. 1997. 滇东曲靖翠峰山群下部花鳞鱼类微体化石的再研究. 古脊椎动物学报, 33: 1–17. Google Scholar

[24] 王尚启, 刘正明, 李治本. 1992. 云南曲靖晚志留世和早泥盆世介形类. 微体古生物学报, 9: 363–389. Google Scholar

[25] 吴浩若. 2000. 广西加里东运动构造古地理问题. 古地理学报, 2: 82–88. Google Scholar

[26] 伍鸿基. 1977. 西南地区志留-泥盆纪三叶虫的新属种及其地层意义. 古生物学报, 16: 95–117. Google Scholar

[27] 赵文金, 朱敏. 2014. 中国志留纪鱼化石及含鱼地层对比研究综述. 地学前缘, 21: 185–202. Google Scholar

[28] 郑荣才, 张锦全. 1989. 滇东-黔西泥盆纪构造格局及岩相古地理演化. 成都地质学院学报, 16: 51–60. Google Scholar

[29] 朱敏, 赵文金. 2006. 肉鳍鱼类的早期辐射与跨古大洋分布. 见: 戎嘉余主编. 生物的起源、辐射与多样性演变——华夏化石记录的启示. 北京: 科学出版社. 399–416, 885–887. Google Scholar

[30] Becker R T, Gradstein F M, Hammer O. 2012. The Devonian Period. In: Gradstein F M, Ogg J G, Schmitz M, Ogg G, eds. The Geologic Time Scale 2012. Amsterdam: Elsevier. 559–601. Google Scholar

[31] Benton M J, Donoghue P C J, Vinther J, Asher R J, Friedman M, Near T J. Constraints on the timescale of animal evolutionary history. Palaeontol Electrona, 2015, 18: 1-116 CrossRef Google Scholar

[32] Benton M J, Donoghue P C J, Asher R J. 2009. Calibrating and constraining molecular clocks. In: Hedges S B, Kumar S, eds. The Timetree of Life. Oxford: Oxford University Press. 35–86. Google Scholar

[33] Benton M J, Donoghue P C J. Paleontological evidence to date the Tree of Life. Mol Biol Evol, 2007, 24: 26-53 CrossRef PubMed Google Scholar

[34] Buggisch W, Joachimski M M. Carbon isotope stratigraphy of the devonian of central and Southern Europe. Palaeogeogr Palaeoclimatol Palaeoecol, 2006, 240: 68-88 CrossRef ADS Google Scholar

[35] Buggisch W, Mann U. Carbon isotope stratigraphy of Lochkovian to Eifelian limestones from the Devonian of central and southern Europe. Int J Earth Sci-Geol Rundsch, 2004, 93: 521-541 CrossRef ADS Google Scholar

[36] Carls P, Slavík L, Valenzuela-Ríos J I. Revisions of conodont biostratigraphy across the Silurian-Devonian boundary. Bull Geosci, 2007, 82: 145-164 CrossRef Google Scholar

[37] Chang M M. 1982. The braincase of Youngolepis, a Lower Devonian crossopterygian from Yunnan, south-western China. Dissertation for Doctoral Degree. Stockholm: GOTAB. Google Scholar

[38] Chang M M, Yu X B. 1981. A new crossopterygian, Youngolepis praecursor, gen. et sp. nov., from Lower Devonian of E. Yunnan, China. Sci Sin, 24: 89–97. Google Scholar

[39] Chang M M, Yu X B. 1984. Structure and phylogenetic significance of Diabolichthys speratus gen. et sp. nov., a new dipnoan-like form from the Lower Devonian of eastern Yunnan, China. Proc Linn Soc N S W, 107: 171–184. Google Scholar

[40] Chang M M, Zhu M. 1993. A new Middle Devonian osteolepidid from Qujing, Yunnan. AAP Memoirs, 15: 183–198. Google Scholar

[41] Chlupáč I, Havlíček V, Kříž J, Kukal Z, Štorch P. 1998. Paleozoic of the Barrandian (Cambrian to Devonian). Prague: Czech Geological Survey. 183. Google Scholar

[42] Chlupáč I, Jäger H, Zikmundova J. 1972. The Silurian-Devonian boundary in the Barrandian. Bull Canad Petrol Geol, 20: 104–174. Google Scholar

[43] Choo B, Zhu M, Qu Q M, Yu X B, Jia L T, Zhao W J. A new osteichthyan from the late Silurian of Yunnan, China. PLoS ONE, 2017, 12: e0170929 CrossRef PubMed ADS Google Scholar

[44] Choo B, Zhu M, Zhao W J, Jia L T, Zhu Y A. The largest Silurian vertebrate and its palaeoecological implications. Sci Rep, 2014, 4: 5242 CrossRef PubMed ADS Google Scholar

[45] Clément G, Janvier P. 2004. Powichthys spitsbergensis sp. nov., a new member of the Dipnomorpha (Sarcopterygii, lobe-finned fishes) from the Lower Devonian of Spitsbergen, with remarks on basal dipnomorph anatomy. Fossils Strata, 50: 92–112. Google Scholar

[46] Cohen K M, Finney S C, Gibbard P L, Fan J X. 2013. Updated. The ICS International Chronostratigraphic Chart. Episodes, 36: 199–204. Google Scholar

[47] Cramer B D, Saltzman M R. Early Silurian paired δ13Ccarb and δ13Corg analyses from the Midcontinent of North America: Implications for paleoceanography and paleoclimate. Palaeogeogr Palaeoclimatol Palaeoecol, 2007, 256: 195-203 CrossRef ADS Google Scholar

[48] Cui X D, Li Q, Qiao T, Zhu M. 2020. New material of thelodonts from Lochkovian (Lower Devonian) of Qujing, Yunnan, China. Vert PalAsiat, 58: 1–15. Google Scholar

[49] Des Marais D J. Isotopic evolution of the biogeochemical carbon cycle during the Precambrian. Rev Mineral Geochem, 2001, 43: 555-578 CrossRef ADS Google Scholar

[50] Gao L D. Devonian spore assemblages of China. Rev Palaeobot Palynol, 1981, 34: 11-23 CrossRef Google Scholar

[51] Giles S, Friedman M, Brazeau M D. Osteichthyan-like cranial conditions in an Early Devonian stem gnathostome. Nature, 2015, 520: 82-85 CrossRef PubMed ADS Google Scholar

[52] Gill B C, Lyons T W, Saltzman M R. Parallel, high-resolution carbon and sulfur isotope records of the evolving Paleozoic marine sulfur reservoir. Palaeogeogr Palaeoclimatol Palaeoecol, 2007, 256: 156-173 CrossRef ADS Google Scholar

[53] Hao S G, Xue J Z, Liu Z F, Wang D M. Zosterophyllum Penhallow around the Silurian-Devonian Boundary of northeastern Yunnan, China. Int J Plant Sci, 2007, 168: 477-489 CrossRef Google Scholar

[54] Herten U, El Hassani A, Mann U. 2004a. Chemostratigraphy and bioproductivity of the Silurian/Devonian Boundary sequence at Mount Issimour (Anti-Atlas, Morocco). Devonian Neritic-Pelagic Correlation and Events (IUGS Subcommission on Devonian Stratigraphy), Rabat, 2004. 64–66. Google Scholar

[55] Herten U, El Hassani A, Mann U. 2004b. Chemostratigraphy and bioproductivity of the Silurian/Devonian Boundary sequence at Bled Dfa and Oued Tiflet (Coastal Meseta, Morocco). Devonian Neritic-Pelagic Correlation and Events (IUGS Subcommission on Devonian Stratigraphy), Rabat, 2004. 67–70. Google Scholar

[56] Herten U, Mann U, Yalçin M N. 2004c. Chemostratigraphic localization of the Silurian/Devonian Boundary in the Palaeozoic of Istanbul (Esenyali, Pendik-Istanbul) by stable carbon isotope composition. In: Proceedings of International Symposium on Earth System Sciences. 321–334. Google Scholar

[57] Hess A V, Trop J M. Sedimentology and carbon isotope (δ13C) stratigraphy of Silurian-Devonian boundary interval strata, Appalachian Basin (Pennsylvania, USA). Palaios, 2019, 34: 405-423 CrossRef ADS Google Scholar

[58] Hladı́ková J, Hladil J, Křı́bek B. Carbon and oxygen isotope record across Pridoli to Givetian stage boundaries in the Barrandian basin (Czech Republic). Palaeogeogr Palaeoclimatol Palaeoecol, 1997, 132: 225-241 CrossRef Google Scholar

[59] Jessen H L. 1975. A new choanate fish, Powichthys thorsteinssoni n.g., n.sp., from the early Lower Devonian of the Canadian Arctic Archipelago. Colloque International du C N R S, Paris, 218: 213–222. Google Scholar

[60] Kaljo D, Martma T, Grytsenko V, Brazauskas A, Kaminskas D. Přídolí carbon isotope trend and upper Silurian to lowermost Devonian chemostratigraphy based on sections in Podolia (Ukraine) and the East Baltic area. Estonian J Earth Sci, 2012, 61: 162-180 CrossRef Google Scholar

[61] Königshof P. Conodont deformation patterns and textural alteration in Paleozoic conodonts: Examples from Germany and France. Senckenbergiana Lethaea, 2003, 83: 149-156 CrossRef Google Scholar

[62] Lu J, Giles S, Friedman M, Zhu M. A new stem sarcopterygian illuminates patterns of character evolution in early bony fishes. Nat Commun, 2017, 8: 1932 CrossRef PubMed ADS Google Scholar

[63] Lu J, Zhu M, Ahlberg P E, Qiao T, Zhu Y A, Zhao W J, Jia L T. 2016. A Devonian predatory fish provides insights into the early evolution of modern sarcopterygians. Sci Adv, 2: 1–8 (e1600154). Google Scholar

[64] Lu J, Zhu M, Long J A, Zhao W J, Senden T J, Jia L T, Qiao T. The earliest known stem-tetrapod from the Lower Devonian of China. Nat Commun, 2012, 3: 1160 CrossRef PubMed ADS Google Scholar

[65] Lu J, Zhu M. An onychodont fish (Osteichthyes, Sarcopterygii) from the Early Devonian of China, and the evolution of the Onychodontiformes. Proc R Soc B, 2010, 277: 293-299 CrossRef PubMed Google Scholar

[66] Małkowski K, Racki G, Drygant D, Szaniawski H. Carbon isotope stratigraphy across the Silurian-Devonian transition in Podolia, Ukraine: Evidence for a global biogeochemical perturbation. Geol Mag, 2009, 146: 674-689 CrossRef ADS Google Scholar

[67] Małkowski K, Racki G. A global biogeochemical perturbation across the Silurian-Devonian boundary: Ocean-continent-biosphere feedbacks. Palaeogeogr Palaeoclimatol Palaeoecol, 2009, 276: 244-254 CrossRef ADS Google Scholar

[68] Manda Š, Frýda J. Silurian-Devonian boundary events and their influence on cephalopod evolution: Evolutionary significance of cephalopod egg size during mass extinctions. Bull Geosci, 2010, 85: 513-540 CrossRef Google Scholar

[69] Mann U, Herten U, Kranendonck O, Poelchau H S, Stroetmann J, Vos H, Wilkes H, Suchý V, Brocke R, Wilde V, Muller A, Ebert J, Bozdogan N, Soylu C, El-Hassani A, Yalçin M N. 2001. Dynamics of the Silurian/Devonian boundary sequence: Sedimentary cycles vs. organic matter variation. Terra Nostra, 4: 44–48. Google Scholar

[70] Martinsson A. 1977. The Silurian-Devonian Boundary. International Union of Geological Sciences, Series A, No.5. Stuttgart: E. Schweizerbart’sche Verlagsbuchhandlung. 1–349. Google Scholar

[71] Müller J, Reisz R R. Four well-constrained calibration points from the vertebrate fossil record for molecular clock estimates. Bioessays, 2005, 27: 1069-1075 CrossRef PubMed Google Scholar

[72] Parham J F, Donoghue P C J, Bell C J, Calway T D, Head J J, Holroyd P A, Inoue J G, Irmis R B, Joyce W G, Ksepka D T, Patané J S L, Smith N D, Tarver J E, van Tuinen M, Yang Z, Angielczyk K D, Greenwood J M, Hipsley C A, Jacobs L, Makovicky P J, Müller J, Smith K T, Theodor J M, Warnock R C M, Benton M J. Best practices for justifying fossil calibrations. Syst Biol, 2011, 61: 346-359 CrossRef PubMed Google Scholar

[73] Rong J Y, Chen X, Su Y Z, Ni Y N, Zhan R B, Chen T E, Fu L P, Li R Y, Fan J X. 2003. Silurian paleogeography of China. In: Landing E, Johnson M E, eds. Silurian Lands and Seas-Paleogeography Outside of Laurentia. NY State Mus Bull, 493: 243–298. Google Scholar

[74] Saltzman M R. Carbon isotope (δ13C) stratigraphy across the Silurian-Devonian transition in North America: Evidence for a perturbation of the global carbon cycle. Palaeogeogr Palaeoclimatol Palaeoecol, 2002, 187: 83-100 CrossRef Google Scholar

[75] Tian J J, Zhu H C, Huang M, Liu F. Late Silurian to Early Devonian palynomorphs from Qujing, Yunnan, Southwest China. Acta Geol Sin-Engl Ed, 2011, 85: 559-568 CrossRef Google Scholar

[76] Veizer J, Ala D, Azmy K, Bruckschen P, Buhl D, Bruhn F, Carden G A F, Diener A, Ebneth S, Godderis Y, Jasper T, Korte C, Pawellek F, Podlaha O G, Strauss H. 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater. Chem Geol, 1999, 161: 59-88 CrossRef Google Scholar

[77] Wang N Z. Thelodonts from the Cuifengshangroup of East Yunnan; China and its biochronological significance. Geobios, 1995, 28: 403-409 CrossRef Google Scholar

[78] Wendler I. A critical evaluation of carbon isotope stratigraphy and biostratigraphic implications for Late Cretaceous global correlation. Earth-Sci Rev, 2013, 126: 116-146 CrossRef ADS Google Scholar

[79] Yu X B, Zhu M, Zhao W J. 2010. The origin and diversification of osteichthyans and sarcopterygians: Rare Chinese fossil findings advance research on key issues of evolution. Bull Chin Acad Sci, 24: 71–75. Google Scholar

[80] Yu X B. A new porolepiform-like fish, Psarolepis romeri, gen. et sp. nov. (Sarcopterygii, Osteichthyes) from the Lower Devonian of Yunnan, China. J Vert Paleont, 1998, 18: 261-274 CrossRef Google Scholar

[81] Zhao W J, Herten U, Zhu M, Mann U, Lücke A. 2010. Carbon isotope stratigraphy across the Silurian-Devonian transition in Zoige (West Qinling), China. Boll Soc Paleont Ital, 49: 35–45. Google Scholar

[82] Zhao W J, Jia G D, Zhu M, Zhu Y A. Geochemical and palaeontological evidence for the definition of the Silurian/Devonian boundary in the Changwantang Section, Guangxi Province, China. Estonian J Earth Sci, 2015, 64: 110-114 CrossRef Google Scholar

[83] Zhao W J, Wang N Z, Zhu M, Jia L T. 2012. The microvertebrate remains and assemblage sequences across Silurian/Devonian Transition in West Qinling, China. Vert PalAsiat, 50: 309–321. Google Scholar

[84] Zhao W J, Wang N Z, Zhu M, Mann U, Herten U, Lücke A. Geochemical stratigraphy and microvertebrate assemblage sequences across the Silurian/Devonian transition in South China. Acta Geol Sin-Engl Ed, 2011, 85: 340-353 CrossRef Google Scholar

[85] Zhao W J, Zhu M. Diversification and faunal shift of Siluro-Devonian vertebrates of China. Geol J, 2007, 42: 351-369 CrossRef Google Scholar

[86] Zhao W J, Zhu M. Siluro-Devonian vertebrate biostratigraphy and biogeography of China. Palaeoworld, 2010, 19: 4-26 CrossRef Google Scholar

[87] Zhao W J, Zhu M. A review of Silurian fishes from Yunnan, China and related biostratigraphy. Palaeoworld, 2015, 24: 243-250 CrossRef Google Scholar

[88] Zhu M, Ahlberg P E, Pan Z H, Zhu Y A, Qiao T, Zhao W J, Jia L T, Lu J. A Silurian maxillate placoderm illuminates jaw evolution. Science, 2016, 354: 334-336 CrossRef PubMed ADS Google Scholar

[89] Zhu M, Ahlberg P E. The origin of the internal nostril of tetrapods. Nature, 2004, 432: 94-97 CrossRef PubMed ADS Google Scholar

[90] Zhu M, Fan J H. Youngolepis from the Xishancun Formation (Early Lochkovian) of Qujing, China. Geobios, 1995, 28: 293-299 CrossRef Google Scholar

[91] Zhu M, Schultze H P. 1997. The oldest sarcopterygian fish. Lethaia, 30: 293–304. Google Scholar

[92] Zhu M, Yu X B, Ahlberg P E, Choo B, Lu J, Qiao T, Qu Q M, Zhao W J, Jia L T, Blom H, Zhu Y A. A Silurian placoderm with osteichthyan-like marginal jaw bones. Nature, 2013, 502: 188-193 CrossRef PubMed ADS Google Scholar

[93] Zhu M, Yu X B, Ahlberg P E. A primitive sarcopterygian fish with an eyestalk. Nature, 2001, 410: 81-84 CrossRef PubMed Google Scholar

[94] Zhu M, Yu X B, Janvier P. A primitive fossil fish sheds light on the origin of bony fishes. Nature, 1999, 397: 607-610 CrossRef ADS Google Scholar

[95] Zhu M, Yu X B, Lu J, Qiao T, Zhao W J, Jia L T. Earliest known coelacanth skull extends the range of anatomically modern coelacanths to the Early Devonian. Nat Commun, 2012, 3: 772 CrossRef PubMed ADS Google Scholar

[96] Zhu M, Yu X B. A primitive fish close to the common ancestor of tetrapods and lungfish. Nature, 2002, 418: 767-770 CrossRef PubMed ADS Google Scholar

[97] Zhu M, Zhao W J, Jia L T, Lu J, Qiao T, Qu Q M. The oldest articulated osteichthyan reveals mosaic gnathostome characters. Nature, 2009, 458: 469-474 CrossRef PubMed ADS Google Scholar

  • 图 1

    肉鳍鱼类支系(包括现生空棘鱼类肺鱼类及四足动物)的系统发育及地史分布

    主要依据Yu等(2010)Lu等(2016)王建华等(2020)的数据资料绘制. 鱼类复原图由Brian Choo和许勇绘制. 数字年龄值基于国际年代地层表v2020/03版(Cohen等, 2013; 更新版)

  • 图 2

    华南晚志留世古地理图(a)与滇东宜良大河地区的地质构造纲要图(b)

    (a) 修改自Rong等(2003)黄冰等(2011); (b) 据地质云的开放地质数据(http://geocloud.cgs.gov.cn)

  • 图 3

    大河-1剖面碳稳定同位素与有机碳含量的变化曲线

  • 图 4

    大河-2剖面碳稳定同位素与有机碳含量的变化曲线

  • 图 5

    滇东志留系-泥盆系过渡带生物地层学与SDB代表性的划分方案

    重要化石类群——无脊椎动物、孢粉、植物和鱼类微体化石的化石资料和生物带分别来自方润森等(1985)王俊卿(2000)Zhao等(2011)欧阳舒等(2017)郄文昆等(2019); 以前SDB划分方案及依据: A(伍鸿基, 1977)、B(方润森等, 1985)、C(戎嘉余等, 1990)、D(Zhao和Zhu, 2010; 郄文昆等, 2019; 蔡家琛等, 2020)和E(Tian等, 2011; 戎嘉余等, 2019)

  • 图 6

    捷克土耳其摩洛哥三个国外剖面与包括大河复合剖面在内的三个国内剖面有机碳同位素变化的化学地层对比

    用千分率、VPDB标准. 部分图例见图3图4

  • 图 7

    志留纪-泥盆纪期间早期有颌类的系统发育与地史分布

    演化分支图综合并简化自Zhu等(2013, 2016)、Giles等(2015)和Lu等(2016, 2017)

  • 表 1   滇东曲靖地区SDB的代表性划分方案a)

    鱼剪影代表肉鳍鱼类冠群的最低层位

qqqq

Contact and support