logo

SCIENTIA SINICA Terrae, Volume 51 , Issue 5 : 725-733(2021) https://doi.org/10.1360/N072020-0281

含裂隙储层中的天然气水合物分布: 来自地震各向异性测量的启示

More info
  • ReceivedAug 20, 2020
  • AcceptedJan 21, 2021
  • PublishedApr 8, 2021

Abstract


Funded by

国家自然科学基金项目(41821002,41874151)

中央高校基本科研业务费项目(18CX05008A)

中国石油大学(华东)


References

[1] 杨志强, 何涛, 朱贺, 蓝坤, 卢海龙. 2020. 含甲烷水合物松散沉积物超声波性质的实验研究. 北京大学学报(自然科学版), 56: 271–282. Google Scholar

[2] Amalokwu K, Chapman M, Best A I, Sothcott J, Minshull T A, Li X Y. Experimental observation of water saturation effects on shear wave splitting in synthetic rock with fractures aligned at oblique angles. Geophys J Int, 2014, 200: 17-24 CrossRef ADS Google Scholar

[3] Archer D, Buffett B, Brovkin V. Ocean methane hydrates as a slow tipping point in the global carbon cycle. Proc Natl Acad Sci USA, 2009, 106: 20596-20601 CrossRef PubMed ADS Google Scholar

[4] Boswell R, Collett T S. Current perspectives on gas hydrate resources. Energy Environ Sci, 2011, 4: 1206-1215 CrossRef Google Scholar

[5] Best A I, Priest J A, Clayton C R, Rees E V. The effect of methane hydrate morphology and water saturation on seismic wave attenuation in sand under shallow sub-seafloor conditions. Earth Planet Sci Lett, 2013, 368: 78-87 CrossRef ADS Google Scholar

[6] Cook A E. 2010. Gas Hydrate-Filled Fracture Reservoirs on Continental Margins. Doctoral Dissertation. New York: Columbia University. Google Scholar

[7] Dai J, Xu H, Snyder F, Dutta N. Detection and estimation of gas hydrates using rock physics and seismic inversion: Examples from the northern deepwater Gulf of Mexico. Lead Edge, 2004, 23: 60-66 CrossRef Google Scholar

[8] Ding P, Di B, Wang D, Wei J, Li X. Measurements of seismic anisotropy in synthetic rocks with controlled crack geometry and different crack densities. Pure Appl Geophys, 2017, 174: 1907-1922 CrossRef ADS Google Scholar

[9] Dvorkin J, Prasad M, Sakai A, Lavoie D. Elasticity of marine sediments: Rock physics modeling. Geophys Res Lett, 1999, 26: 1781-1784 CrossRef ADS Google Scholar

[10] Ecker C, Dvorkin J, Nur A. Sediments with gas hydrates: Internal structure from seismic AVO. Geophysics, 1998, 63: 1659-1669 CrossRef ADS Google Scholar

[11] Ellis M H. 2008. Joint seismic and electrical measurements of gas hydrates in continental margin sediments. Doctoral Dissertation. Southampton: University of Southampton. Google Scholar

[12] Eshelby J D. The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc R Soc Lond A, 1957, 241: 376-396 CrossRef ADS Google Scholar

[13] Ghosh R, Sain K, Ojha M. Effective medium modeling of gas hydrate-filled fractures using the sonic log in the Krishna-Godavari basin, offshore eastern India. J Geophys Res Solid Earth, 2010, 115: B06101 CrossRef ADS Google Scholar

[14] Han T, Boris G, Fu L Y, Qi Q, Wei J, Chen X. Combined effects of pressure and water saturation on the seismic anisotropy in artificial porous sandstone with aligned fractures. J Geophys Res Solid Earth, 2020, 125: e19091 CrossRef ADS Google Scholar

[15] Helgerud M B, Dvorkin J, Nur A, Sakai A, Collett T S. Elastic-wave velocity in marine sediments with gas hydrates: Effective medium modeling. Geophys Res Lett, 1999, 26: 2021-2024 CrossRef ADS Google Scholar

[16] Hu G, Ye Y, Liu C, Best A I, Li C. 2014. Gas hydrate distribution in sediment pore space and its impact on acoustic properties of hydrate-bearing sediments. In: Proceedings of the 8th International Conference on Gas Hydrates (ICGH8-2014). Beijing. Google Scholar

[17] Hudson J A. Overall properties of a cracked solid. Math Proc Camb Phil Soc, 1980, 88: 371-384 CrossRef ADS Google Scholar

[18] Konno Y, Jin Y, Yoneda J, Kida M, Egawa K, Ito T, Suzuki K, Nagao J. Effect of methane hydrate morphology on compressional wave velocity of sandy sediments: Analysis of pressure cores obtained in the Eastern Nankai Trough. Mar Pet Geol, 2015, 66: 425-433 CrossRef Google Scholar

[19] Kumar D, Sen M, Bangs N, Wang C, Pecher I. Seismic anisotropy at Hydrate Ridge. Geophys Res Lett, 2006, 33: L01306 CrossRef ADS Google Scholar

[20] Lee M W, Collett T S. Gas hydrate saturations estimated from fractured reservoir at Site NGHP-01-10, Krishna-Godavari Basin, India. J Geophys Res Solid Earth, 2009, 114: B07102 CrossRef ADS Google Scholar

[21] Lee M W. 2009. Anisotropic Velocities of Gas Hydrate-Bearing Sediments in Fractured Reservoirs. US Geological Survey Scientific Investigations Report. Google Scholar

[22] Lee M W. Biot-Gassmann theory for velocities of gas hydrate-bearing sediments. Geophysics, 2002, 67: 1711-1719 CrossRef ADS Google Scholar

[23] Liu X, Yin X, Luan X. Seismic rock physical modelling for gas hydrate-bearing sediments. Sci China Earth Sci, 2018, 61: 1261-1278 CrossRef ADS Google Scholar

[24] Mavko G, Mukerji T, Dvorkin J. 2009. The Rock Physics Handbook. Cambridge: Cambridge University Press. 35. Google Scholar

[25] Pan H J, Li H B, Grana D, Zhang Y, Liu T Y, Geng C. Quantitative characterization of gas hydrate bearing sediment using elastic-electrical rock physics models. Mar Pet Geol, 2019, 105: 273-283 CrossRef Google Scholar

[26] Priest J A, Best A I, Clayton C R. A laboratory investigation into the seismic velocities of methane gas hydrate-bearing sand. J Geophys Res Solid Earth, 2005, 110: B04102 CrossRef ADS Google Scholar

[27] Priest J A, Best A I, Clayton C R. Attenuation of seismic waves in methane gas hydrate-bearing sand. Geophys J Int, 2006, 164: 149-159 CrossRef ADS Google Scholar

[28] Priest J A, Rees E V, Clayton C R. Influence of gas hydrate morphology on the seismic velocities of sands. J Geophys Res Solid Earth, 2009, 114: B11205 CrossRef ADS Google Scholar

[29] Qian J, Wang X, Collett T S, Dong D, Guo Y, Su P, Liang J. Gas hydrate accumulation and saturations estimated from effective medium theory in the eastern Pearl River Mouth Basin, South China Sea. Interpretation, 2017, 5: SM33-SM48 CrossRef Google Scholar

[30] Sahoo S K, Madhusudhan B N, Marín-Moreno H, North L J, Ahmed S, Falcon-Suarez I H, Minshull T A, Best A I. Laboratory insights into the effect of sediment-hosted methane hydrate morphology on elastic wave velocity from time-lapse 4-D synchrotron X-ray computed tomography. Geochem Geophys Geosyst, 2018a, 19: 4502-4521 CrossRef ADS Google Scholar

[31] Sahoo S K, Marín-Moreno H, North L J, Falcon-Suarez I, Madhusudhan B N, Best A I, Minshull T A. Presence and consequences of coexisting methane gas with hydrate under two phase water-hydrate stability conditions. J Geophys Res Solid Earth, 2018b, 123: 3377-3390 CrossRef ADS Google Scholar

[32] Sahoo S K, North L J, Marín-Moreno H, Minshull T A, Best A I. Laboratory observations of frequency-dependent ultrasonic P-wave velocity and attenuation during methane hydrate formation in Berea sandstone. Geophys J Int, 2019, 219: 713-723 CrossRef ADS Google Scholar

[33] Schindler M, Batzle M L, Prasad M. Micro X-ray computed tomography imaging and ultrasonic velocity measurements in tetrahydrofuran-hydrate-bearing sediments. Geophys Prospect, 2017, 65: 1025-1036 CrossRef ADS Google Scholar

[34] Sloan E D, Koh C. 2007. Clathrate Hydrates of Natural Gases. Boca Raton: CRC Press. Google Scholar

[35] Sriram G, Dewangan P, Ramprasad T, Rama Rao P. Anisotropic amplitude variation of the bottom-simulating reflector beneath fracture-filled gas hydrate deposit. J Geophys Res Solid Earth, 2013, 118: 2258-2274 CrossRef ADS Google Scholar

[36] Sultan N, Cochonat P, Foucher J P, Mienert J. Effect of gas hydrates melting on seafloor slope instability. Mar Geol, 2004, 213: 379-401 CrossRef ADS Google Scholar

[37] Thomsen L. Weak elastic anisotropy. Geophysics, 1986, 51: 1954-1966 CrossRef ADS Google Scholar

[38] Thomsen L. Elastic anisotropy due to aligned cracks in porous rock. Geophys Prospect, 1995, 43: 805-829 CrossRef ADS Google Scholar

[39] Tillotson P, Sothcott J, Best A I, Chapman M, Li X Y. Experimental verification of the fracture density and shear-wave splitting relationship using synthetic silica cemented sandstones with a controlled fracture geometry. Geophys Prospect, 2012, 60: 516-525 CrossRef ADS Google Scholar

[40] Wang T, Tang X. Multipole acoustic responses of a prestressed formation: An effective medium approach. Geophysics, 2005, 70: F35-F44 CrossRef Google Scholar

[41] Winters W J, Pecher I A, Waite W F, Mason D H. Physical properties and rock physics models of sediment containing natural and laboratory-formed methane gas hydrate. Am Mineral, 2004, 89: 1221-1227 CrossRef ADS Google Scholar

[42] Xu S, Tang X, Torres-Verdín C, Su Y. Seismic shear wave anisotropy in cracked rocks and an application to hydraulic fracturing. Geophys Res Lett, 2018, 45: 5390-5397 CrossRef ADS Google Scholar

  • 图 1

    含定向裂隙砂岩样品制作流程示意图

  • 图 2

    含硬币状定向裂隙人造砂岩样品示意图

    蓝色虚线框代表层理面. 虚线框中的灰色椭圆表示硬币状裂隙, 裂隙平行于层理面

  • 图 3

    实验系统示意图

    (a)、(b)分别代表声波换能器在地震各向异性测量系统内的整体和平面布局. 纵波和横波换能器的中心频率分别为0.7和0.4MHz. 纵波和横波速度的测量误差分别约为±0.8%和±1.2%(Han等, 2020). 在三分量声波换能器的中轴线处, 有一条管状通道经气体管线与装有减压阀的甲烷气体钢瓶相连, 用以向样品中注入甲烷气体

  • 图 4

    各向异性速度和水合物饱和度随时间的变化

    (a) 各向异性纵波速度与水合物饱和度(Sh)随时间的变化; (b) 各向异性横波速度与水合物饱和度(Sh)随时间的变化

  • 图 5

    各向异性速度随水合物饱和度的变化

    (a) 各向异性纵波速度; (b) 各向异性横波速度

  • 图 6

    归一化的各向异性纵波速度(a)和各向异性横波速度(b)随水合物饱和度的变化

    归一化的速度由各向异性速度除以每种速度的初始值得到

  • 图 7

    Thomsen各向异性参数εγδ随水合物饱和度的变化

    各向异性参数εγ分别代表纵波和横波各向异性

qqqq

Contact and support