logo

SCIENTIA SINICA Terrae, Volume 49 , Issue 9 : 1394-1412(2019) https://doi.org/10.1360/N072018-00200

长江中下游成矿带高分辨地壳三维横波速度结构及其形成的深部动力学背景

More info
  • ReceivedJul 13, 2018
  • AcceptedApr 2, 2019
  • PublishedMay 14, 2019

Abstract


Funding

中国地质调查局国土资源调查项目(DD20179354)

国家自然科学基金项目(41790464,41674061)


Acknowledgment

感谢两位审稿人和编委对本文提出的修改意见和建议. 感谢中国地质科学院、北京大学和南京大学的研究人员和野外工作人员为本研究提供了流动台阵的连续波形数据. 感谢国家测震台网数据备份中心为本研究提供固定台站的连续波形数据(doi: 10.11998/SeisDmc/SN, http://www.seisdmc.ac.cn). 本文所得最终的三维地壳模型(包括横波速度、纵波速度和密度)见网络版附录(http://earthcn.scichina.com).


References

[1] 邓晋福, 吴宗絮. 2001. 下扬子克拉通岩石圈减薄事件与长江中下游Cu-Fe成矿带. 安徽地质, 11: 86–91. Google Scholar

[2] 董树文, 吴锡浩, 吴珍汉, 邓晋福, 高锐, 王成善. 2000. 论东亚大陆的构造翘变. 地质论评, 46: 8–13. Google Scholar

[3] 董树文, 张岳桥, 龙长兴, 张振宇, 季强, 王涛, 胡建民, 陈宣华. 2007. 中国侏罗纪构造变革与燕山运动新诠释. 地质学报, 81: 1449–1461. Google Scholar

[4] 高佳佳, 陈永顺. 2017. 华南北部背景噪声层析成像. 地球物理学进展, 32: 1423–1431. Google Scholar

[5] 侯增谦, 潘小菲, 杨志明, 曲晓明. 2007. 初论大陆环境斑岩铜矿. 现代地质, 21: 332–351. Google Scholar

[6] 黄汲清, 任纪舜, 姜春发, 张之孟, 徐志琴. 1977. 中国大地构造基本轮廓. 地质学报, 2: 117–135. Google Scholar

[7] 江国明, 张贵宾, 吕庆田, 史大年, 徐峣. 2014. 长江中下游地区成矿深部动力学机制: 远震层析成像证据. 岩石学报, 30: 907–917. Google Scholar

[8] 李曙光. 2001. 长江中下游中生代岩浆岩及铜铁成矿带的深部构造背景. 安徽地质, 11: 118–122. Google Scholar

[9] 梁锋, 吕庆田, 严加永, 刘振东. 2014. 长江中下游宁芜火山岩盆地深部结构特征——来自反射地震的认识. 岩石学报, 30: 941–956. Google Scholar

[10] 刘保金, 酆少英, 姬计法, 石金虎, 谭雅丽, 李怡青. 2015. 郯庐断裂带中南段的岩石圈精细结构. 地球物理学报, 58: 1610–1621. Google Scholar

[11] 刘振东, 吕庆田, 严加永, 赵金花, 吴明安. 2012. 庐枞盆地浅表地壳速度成像与隐伏矿靶区预测. 地球物理学报, 55: 3910–3922. Google Scholar

[12] 吕庆田, 董树文, 史大年, 汤井田, 江国明, 张永谦, 徐涛, SinoProbe-03-CJ项目组. 2014. 长江中下游成矿带岩石圈结构与成矿动力学模型——深部探测(SinoProbe)综述. 岩石学报, 30: 889–906. Google Scholar

[13] 吕庆田, 侯增谦, 杨竹森, 史大年. 2004. 长江中下游地区的底侵作用及动力学演化模式: 来自地球物理资料的约束. 中国科学D辑: 地球科学, 34: 783–794. Google Scholar

[14] 吕庆田, 刘振东, 董树文, 严加永, 张永谦. 2015. “长江深断裂带”的构造性质: 深地震反射证据. 地球物理学报, 58: 4344–4359. Google Scholar

[15] 孟亚锋, 姚华建, 王行舟, 冯吉坤, 洪德全, 汪小厉. 2019. 用背景噪声成像研究郯庐断裂带中南段及邻区地壳速度结构与变形特征. 地球物理学报(已接收). Google Scholar

[16] 欧阳龙斌, 李红宜, 吕庆田, 李信富, 江国明, 张贵宾, 史大年, 郑丹, 张冰, 李佳鹏. 2015. 长江中下游成矿带及邻区地壳剪切波速度结构和径向各向异性. 地球物理学报, 58: 4388–4402. Google Scholar

[17] 强建科, 王显莹, 汤井田, 潘伟, 张钱江. 2014. 淮南-溧阳大地电磁剖面与地质结构分析. 岩石学报, 30: 957–965. Google Scholar

[18] 史大年, 吕庆田, 徐明才, 赵金花. 2004. 铜陵矿集区地壳浅地表结构的地震层析研究. 矿床地质, 23: 383–389. Google Scholar

[19] 史大年, 吕庆田, 徐文艺, 严加永, 赵金花, 董树文, 常印佛. 2012. 长江中下游成矿带及邻区地壳结构. 地质学报, 86: 389–399. Google Scholar

[20] 王必金, 林畅松, 陈莹, 卢明国, 刘景彦. 2006. 江汉盆地幕式构造运动及其演化特征. 石油地球物理勘探, 41: 226–230. Google Scholar

[21] 王强, 赵振华, 熊小林, 许继峰. 2001. 底侵玄武岩下地壳的熔融: 来自安徽沙溪adakite质富钠石英闪长玢岩的证据. 地球化学, 30: 353–362. Google Scholar

[22] 王孝磊, 周金城, 陈昕, 张凤凤, 孙梓铭. 2017. 江南造山带的形成与演化. 岩石物理地球化学通报, 36: 714–735. Google Scholar

[23] 吴福元, 葛文春, 孙德有, 郭春丽. 2003. 中国东部岩石圈减薄研究中的几个问题. 地学前缘, 10: 51–60. Google Scholar

[24] 肖晓, 王显莹, 汤井田, 周聪, 王永清, 陈向斌, 吕庆田. 2014. 安徽庐枞矿集区大地电磁探测与电性结构分析. 地质学报, 88: 478–495. Google Scholar

[25] 徐明, 赵平, 朱传庆, 单竞男, 胡圣标. 2010. 江汉盆地钻井地温测量和大地热流分布. 地质科学, 45: 317–323. Google Scholar

[26] 徐涛, 张忠杰, 田小波, 刘宝峰, 白志明, 吕庆田, 滕吉文. 2014. 长江中下游成矿带及邻区地壳速度结构: 来自立辛-宜兴宽角地震资料的约束. 岩石学报, 30: 918–930. Google Scholar

[27] 徐峣, 吕庆田, 张贵宾, 江国明, 张昌榕, 单希鹏, 吴强. 2015. 长江中下游成矿带三维S波速度结构及对深部过程的约束. 地球物理学报, 58: 4373–4387. Google Scholar

[28] 杨攀新, 高占武, 张俊. 2009. 江汉盆地构造模式和演化及其与中强地震关系研究. 地震, 29: 124–130. Google Scholar

[29] 张国伟, 郭安林, 王岳军, 李三忠, 董云鹏, 刘少峰, 何登发, 程顺有, 鲁如魁, 姚安平. 2013. 中国华南大陆构造与问题. 中国科学: 地球科学, 43: 1553–1582. Google Scholar

[30] 张培震, 邓起东, 张国民, 马瑾, 甘卫军, 闵伟, 毛凤英, 王琪. 2003. 中国大陆的强震活动与活动地块. 中国科学D辑: 地球科学, 33: 12–20. Google Scholar

[31] 张旗, 金惟俊, 李承东, 王元龙. 2009. 中国东部燕山期大规模岩浆活动与岩石圈减薄: 与大火成岩省的关系. 地学前缘, 16: 21–51. Google Scholar

[32] 张旗, 王焰, 钱青, 杨进辉, 王元龙, 赵太平, 郭光军. 2001. 中国东部燕山期埃达克岩的特征及其构造-成矿意义. 岩石学报, 17: 236–244. Google Scholar

[33] 张永谦, 吕庆田, 滕吉文, 王谦身, 徐涛. 2014. 长江中下游及邻区的地壳密度结构与深部成矿背景探讨——来自重力学的约束. 岩石学报, 30: 931–940. Google Scholar

[34] 郑洪伟, 李延栋. 2013. 长江中下游成矿带岩石圈深部结构的远震P波层析成像. 地球物理学进展, 28: 2283–2293. Google Scholar

[35] 郑秀芬, 欧阳飚, 张东宁, 姚志祥, 梁建宏, 郑洁. 2009. “国家数字测震台网数据备份中心”技术系统建设及其对汶川大地震研究的数据支撑. 地球物理学报, 52: 1412–1417. Google Scholar

[36] 郑永飞, 徐峥, 赵子福, 戴立群. 2018. 华北中生代镁铁质岩浆作用与克拉通减薄和破坏. 中国科学: 地球科学, 48: 379–414. Google Scholar

[37] 周涛发, 范裕, 王世伟, White N C. 2017. 长江中下游成矿带成矿规律和成矿模式. 岩石学报, 33: 3353–3372. Google Scholar

[38] 周涛发, 范裕, 袁峰. 2008. 长江中下游成矿带成岩成矿作用研究进展. 岩石学报, 24: 1665–1678. Google Scholar

[39] 周涛发, 范裕, 袁峰, 钟国雄. 2012. 长江中下游成矿带地质与矿产研究进展. 岩石学报, 28: 3051–3066. Google Scholar

[40] 朱光, 刘程, 顾承串, 张帅, 李云剑, 苏楠, 肖世椰. 2018. 郯庐断裂带晚中生代演化对西太平洋俯冲历史的指示. 中国科学: 地球科学, 48: 415–435. Google Scholar

[41] Ammon C J, Randall G E, Zandt G. On the nonuniqueness of receiver function inversions. J Geophys Res, 1990, 9515303-15318 CrossRef ADS Google Scholar

[42] Bensen G D, Ritzwoller M H, Barmin M P, Levshin A L, Lin F, Moschetti M P, Shapiro N M, Yang Y. Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements. Geophys J Int, 2007, 1691239-1260 CrossRef ADS Google Scholar

[43] Boschi L, Ekström G. New images of the Earth’s upper mantle from measurements of surface wave phase velocity anomalies. J Geophys Res, 2002, 1072059 CrossRef ADS Google Scholar

[44] Brocher T M. Empirical relations between elastic wavespeeds and density in the earth’s crust. Bull Seismol Soc Am, 2005, 952081-2092 CrossRef Google Scholar

[45] Defant M J, Drummond M S. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature, 1990, 347662-665 CrossRef ADS Google Scholar

[46] DePaolo D J. Trace element and isotopic effects of combined wallrock assimilation and fractional crystallization. Earth Planet Sci Lett, 1981, 53189-202 CrossRef ADS Google Scholar

[47] Drummond M S, Defant M J. A model for Trondhjemite-Tonalite-Dacite Genesis and crustal growth via slab melting: Archean to modern comparisons. J Geophys Res, 1990, 9521503-21521 CrossRef ADS Google Scholar

[48] Fang H, Yao H, Zhang H, Huang Y C, van der Hilst R D. Direct inversion of surface wave dispersion for three-dimensional shallow crustal structure based on ray tracing: Methodology and application. Geophys J Int, 2015, 2011251-1263 CrossRef ADS Google Scholar

[49] Feng M, An M. Lithospheric structure of the Chinese mainland determined from joint inversion of regional and teleseismic Rayleigh-wave group velocities. J Geophys Res, 2010, 115B06317 CrossRef ADS Google Scholar

[50] Fukao Y, Obayashi M. Subducted slabs stagnant above, penetrating through, and trapped below the 660 km discontinuity. J Geophys Res, 2013, 1185920-5938 CrossRef ADS Google Scholar

[51] Gu H, Yang X, Nie Z, Deng J, Duan L, Hu Q, Abdul Shakoor M, Gao E, Jasmi Hafiz A A. Study of late-Mesozoic magmatic rocks and their related copper-gold-polymetallic deposits in the Guichi ore-cluster district, Lower Yangtze River Metallogenic Belt, East China. Int Geol Rev, 2018, 601404-1434 CrossRef Google Scholar

[52] Hansen P C. Regularization tools version 4.0 for Matlab 7.3. Numer Algor, 2007, 46189-194 CrossRef ADS Google Scholar

[53] Herrmann R B. Computer programs in seismology: An evolving tool for instruction and research. Seismol Res Lett, 2013, 841081-1088 CrossRef Google Scholar

[54] Hildreth W, Moorbath S. Crustal contributions to arc magmatism in the Andes of Central Chile. Contr Mineral Petrol, 1988, 98455-489 CrossRef ADS Google Scholar

[55] Holbrook W S, Mooney W D, Christensen N I. 1992. The seismic velocity structure of the deep continental crust. In: Fountain D M, Arculus R, Kay R W, eds. Continental Lower Crust. Amsterdam: Elsevier. 1–44. Google Scholar

[56] Huang J, Zhao D. High-resolution mantle tomography of China and surrounding regions. J Geophys Res, 2006, 111B09305 CrossRef ADS Google Scholar

[57] Huang R, Xu Y, Zhu L, He K. Detailed Moho geometry beneath southeastern China and its implications on thinning of continental crust. J Asian Earth Sci, 2015, 11242-48 CrossRef ADS Google Scholar

[58] Ilchenko T. Dniepr-Donets Rift: Deep structure and evolution from DSS profiling. Tectonophysics, 1996, 26883-98 CrossRef ADS Google Scholar

[59] Jiang G, Zhang G, Lü Q, Shi D, Xu Y. 3-D velocity model beneath the Middle-Lower Yangtze River and its implication to the deep geodynamics. Tectonophysics, 2013, 60636-47 CrossRef ADS Google Scholar

[60] Lü Q, Shi D, Liu Z, Zhang Y, Dong S, Zhao J. Crustal structure and geodynamics of the Middle and Lower reaches of Yangtze metallogenic belt and neighboring areas: Insights from deep seismic reflection profiling. J Asian Earth Sci, 2015, 114704-716 CrossRef ADS Google Scholar

[61] Lü Q, Yan J, Shi D, Dong S, Tang J, Wu M, Chang Y. Reflection seismic imaging of the Lujiang-Zongyang volcanic basin, Yangtze Metallogenic Belt: An insight into the crustal structure and geodynamics of an ore district. Tectonophysics, 2013, 60660-77 CrossRef ADS Google Scholar

[62] Li H, Song X, Lü Q, Yang X, Deng Y, Ouyang L, Li J, Li X, Jiang G. Seismic imaging of lithosphere structure and upper mantle deformation beneath east-central China and their tectonic implications. J Geophys Res-Solid Earth, 2018, 1232856-2870 CrossRef ADS Google Scholar

[63] Li X H, Li Z X, Li W X, Wang X C, Gao Y. Revisiting the “C-type adakites” of the Lower Yangtze River Belt, central eastern China: In-situ zircon Hf-O isotope and geochemical constraints. Chem Geol, 2013, 3451-15 CrossRef ADS Google Scholar

[64] Li Y, Gao M, Wu Q. Crustal thickness map of the Chinese mainland from teleseismic receiver functions. Tectonophysics, 2014, 61151-60 CrossRef ADS Google Scholar

[65] Ling M X, Wang F Y, Ding X, Hu Y H, Zhou J B, Zartman R E, Yang X Y, Sun W. Cretaceous ridge subduction along the lower Yangtze River belt, Eastern China. Econ Geol, 2009, 104303-321 CrossRef Google Scholar

[66] Luo Y, Xu Y, Yang Y. Crustal structure beneath the Dabie orogenic belt from ambient noise tomography. Earth Planet Sci Lett, 2012, 313-31412-22 CrossRef ADS Google Scholar

[67] Luo Y, Xu Y, Yang Y. Crustal radial anisotropy beneath the Dabie orogenic belt from ambient noise tomography. Geophys J Int, 2013, 1951149-1164 CrossRef ADS Google Scholar

[68] Ouyang L, Li H, Lü Q, Yang Y, Li X, Jiang G, Zhang G, Shi D, Zheng D, Sun S, Tan J, Zhou M. Crustal and uppermost mantle velocity structure and its relationship with the formation of ore districts in the Middle-Lower Yangtze River region. Earth Planet Sci Lett, 2014, 408378-389 CrossRef ADS Google Scholar

[69] Paige C C, Saunders M A. Algorithm 583: LSQR: Sparse linear equations and least squares problems. ACM Trans Math Software, 1982a, 8195-209 CrossRef Google Scholar

[70] Paige C C, Saunders M A. LSQR: An algorithm for sparse linear equations and sparse least squares. ACM Trans Math Software, 1982b, 843-71 CrossRef Google Scholar

[71] Peacock S M, Christensen N I, Bostock M G, Audet P. High pore pressures and porosity at 35 km depth in the Cascadia subduction zone. Geology, 2011, 39471-474 CrossRef ADS Google Scholar

[72] Rawlinson N, Fichtnerx A, Sambridge M, Youngjj M K. 2014. Seismic tomography and the assessment of uncertainty. Adv Geophys, 55: 1–76. Google Scholar

[73] Rawlinson N, Sambridge M. The fast marching method: An effective tool for tomographic imaging and tracking multiple phases in complex layered media. Explor Geophys, 2005, 36341-350 CrossRef Google Scholar

[74] Rawlinson N, Spakman W. On the use of sensitivity tests in seismic tomography. Geophys J Int, 2016, 2051221-1243 CrossRef ADS Google Scholar

[75] Ren J, Tamaki K, Li S, Junxia Z. Late Mesozoic and Cenozoic rifting and its dynamic setting in Eastern China and adjacent areas. Tectonophysics, 2002, 344175-205 CrossRef ADS Google Scholar

[76] She Y, Yao H, Zhai Q, Wang F, Tian X. Shallow crustal structure of the middle-lower Yangtze River region in Eastern China from surface-wave tomography of a large volume airgun-shot experiment. Seismol Res Lett, 2018, 891003-1013 CrossRef Google Scholar

[77] Shen W, Ritzwoller M H, Kang D, Kim Y H, Lin F C, Ning J, Wang W, Zheng Y, Zhou L. A seismic reference model for the crust and uppermost mantle beneath China from surface wave dispersion. Geophys J Int, 2016, 206954-979 CrossRef ADS Google Scholar

[78] Shi D, Lü Q, Xu W, Yan J, Zhao J, Dong S, Chang Y. Crustal structure beneath the middle-lower Yangtze metallogenic belt in East China: Constraints from passive source seismic experiment on the Mesozoic intra-continental mineralization. Tectonophysics, 2013, 60648-59 CrossRef ADS Google Scholar

[79] Song P, Zhang X, Liu Y, Teng J. Moho imaging based on receiver function analysis with teleseismic wavefield reconstruction: Application to South China. Tectonophysics, 2017, 718118-131 CrossRef ADS Google Scholar

[80] Sun W, Ding X, Hu Y H, Li X H. The golden transformation of the Cretaceous plate subduction in the west Pacific. Earth Planet Sci Lett, 2007, 262533-542 CrossRef ADS Google Scholar

[81] Tian X, Yang Z, Wang B, Yao H, Wang F, Liu B, Zheng C, Gao Z, Xiong W, Deng X. 3D seismic refraction travel-time tomography beneath the middle-lower Yangtze River region. Seismol Res Lett, 2018, 89992-1002 CrossRef Google Scholar

[82] Wang Q, Wyman D A, Xu J F, Zhao Z H, Jian P, Xiong X L, Bao Z W, Li C F, Bai Z H. Petrogenesis of Cretaceous adakitic and shoshonitic igneous rocks in the Luzong area, Anhui Province (eastern China): Implications for geodynamics and Cu-Au mineralization. Lithos, 2006, 89424-446 CrossRef ADS Google Scholar

[83] Wang Q, Xu J F, Zhao Z H, Bao Z W, Xu W, Xiong X L. Cretaceous high-potassium intrusive rocks in the Yueshan-Hongzhen area of east China: Adakites in an extensional tectonic regime within a continent. Geochem J, 2004, 38417-434 CrossRef Google Scholar

[84] Xu J F, Shinjo R, Defant M J, Wang Q, Rapp R P. Origin of Mesozoic adakitic intrusive rocks in the Ningzhen area of east China: Partial melting of delaminated lower continental crust?. Geology, 2002, 301111 CrossRef Google Scholar

[85] Yao H, Gouédard P, Collins J A, McGuire J J, van der Hilst R D. Structure of young East Pacific Rise lithosphere from ambient noise correlation analysis of fundamental- and higher-mode Scholte-Rayleigh waves. C R Geosci, 2011, 343571-583 CrossRef ADS Google Scholar

[86] Yao H, van der Hilst R D, de Hoop M V. Surface-wave array tomography in SE Tibet from ambient seismic noise and two-station analysis—I. Phase velocity maps. Geophys J Int, 2006, 166732-744 CrossRef ADS Google Scholar

[87] Zhang Y, Yao H, Yang H Y, Cai H T, Fang H, Xu J, Jin X, Kuo-Chen H, Liang W T, Chen K X. 3-D crustal shear-wave velocity structure of the Taiwan Strait and Fujian, SE China, revealed by ambient noise tomography. J Geophys Res, 2018, 1238016-8031 CrossRef ADS Google Scholar

[88] Zheng X F, Yao Z X, Liang J H, Zheng J. The role played and opportunities provided by IGP DMC of China national seismic network in Wenchuan earthquake disaster relief and researches. Bull Seismol Soc Am, 2010, 1002866-2872 CrossRef Google Scholar

[89] Zhou L, Xie J, Shen W, Zheng Y, Yang Y, Shi H, Ritzwoller M H. The structure of the crust and uppermost mantle beneath South China from ambient noise and earthquake tomography. Geophys J Int, 2012, 1891565-1583 CrossRef ADS Google Scholar

qqqq

Contact and support