SCIENTIA SINICA Terrae, Volume 46 , Issue 12 : 1658-1674(2016) https://doi.org/10.1360/N072015-00497


More info
  • ReceivedFeb 3, 2016
  • AcceptedApr 29, 2016
  • PublishedSep 22, 2016


Funded by


国家重大基础研究计划(2012CB956002, 2016YFA0600303)




感谢三位审稿专家的建议和意见. 感谢江苏省气候变化协同创新中心的资助.


[1] 管 秉贤. 副热带逆流二十年研究概况. 海洋科学进展, 1987, 6: 71-86 Google Scholar

[2] 任 雪娟, 杨 修群, 韩 博. 北太平洋冬季海-气耦合的主模态及其与瞬变扰动异常的联系. 气象学报, 2007, 65: 52-62 Google Scholar

[3] 徐 海明, 王 琳玮, 何 金海. 卫星资料揭示的春季黑潮海区海洋对大气的影响及其机制研究. 科学通报, 2008, 53: 463-470 Google Scholar

[4] 徐 蜜蜜, 徐 海明, 朱 素行. 春季我国东部海洋温度锋区对大气的强迫作用及其机制研究. 大气科学, 2010, 34: 1071-1087 Google Scholar

[5] 谢 傲, 徐 海明, 徐 蜜蜜, 马 静. 海表面盛行风背景下大气对黑潮海洋锋的响应特征. 气象科学, 2014, 34: 355-364 Google Scholar

[6] 朱 伟军, 孙 照渤. 冬季太平洋SST异常对风暴轴和急流的影响. 南京气象学院学报, 1999, 22: 575-581 Google Scholar

[7] Chen F, Dudhia J. Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon Weather Rev, 2001, 129: 569-585 Google Scholar

[8] Dudhia J. Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J Atmos Sci, 1989, 46: 3077-3107 CrossRef Google Scholar

[9] Hayes S P, Mcphaden M J, Wallace J M. The influence of Sea-Surface Temperature on surface wind in the Eastern Equatorial Pacific: Weekly to monthly variability. J Clim, 1989, 2: 1500-1506 CrossRef Google Scholar

[10] Hong S Y, Noh Y, Dudhia J. A new vertical diffusion package with an explicit treatment of entrainment processes. Mon Wea Rev, 2006, 134: 2318-2341 CrossRef ADS Google Scholar

[11] Hoskins B J, Hodges K I. New perspectives on the northern hemisphere winter storm tracks. J Atmos Sci, 2002, 59: 1041-1061 CrossRef Google Scholar

[12] Hoskins B J, James I N, White G H. The shape, propagation and mean-flow interaction of large-scale weather systems. J Atmos Sci, 1983, 40: 1595-1612 CrossRef Google Scholar

[13] Hoskins B J, Valdes P J. On the existence of storm-tracks. J Atmos Sci, 1990, 47: 1854-1864 CrossRef Google Scholar

[14] Hotta D, Nakamura H. On the significance of the sensible heat supply from the ocean in the maintenance of the mean baroclinicity along storm tracks. J Clim, 2011, 24: 3377-3401 CrossRef Google Scholar

[15] Hsiung J. Estimates of global oceanic meridional heat transport. J Phys Oceanogr, 1985, 15: 1405-1413 CrossRef Google Scholar

[16] Janjić Z I. The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon Wea Rev, 1994, 122: 927-945 CrossRef Google Scholar

[17] Janjić Z I. Comments on “development and evaluation of a convection scheme for use in climate models”. J Atmos Sci, 2000, 57: 3686-3686 CrossRef Google Scholar

[18] Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Leetmaa A, Reynolds R, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo K C, Ropelewski C, Wang J, Jenne R, Joseph D. The NCEP/NCAR 40-Year Reanalysis Project. Bull Amer Meteor Soc, 1996, 77: 437-471 CrossRef Google Scholar

[19] Kelly K A, Small R J, Samelson R M, Qiu B, Joyce T M, Kwon Y O, Cronin M F. Western boundary currents and frontal air-sea interaction: Gulf stream and Kuroshio Extension. J Clim, 2010, 23: 5644-5667 CrossRef Google Scholar

[20] Kobashi F, Xie S P, Iwasaka N, Sakamoto T T. Deep atmospheric response to the North Pacific Oceanic subtropical front in spring. J Clim, 2008, 21: 5960-5975 CrossRef ADS Google Scholar

[21] Kwon Y O, Alexander M A, Bond N A, et al. Role of the gulf stream and Kuroshio–Oyashio systems in large-scale atmosphere-ocean interaction: A review. J Clim, 2010, 23: 3249-3281 CrossRef Google Scholar

[22] Lindzen R S, Farrell B. A simple approximate result for the maximum growth rate of baroclinic instabilities. J Atmos Sci, 1980, 37: 1648-1654 CrossRef Google Scholar

[23] Lindzen R S, Nigam S. On the role of sea surface temperature gradients in forcing low-level winds and convergence in the tropics. J Atmos Sci, 1987, 44: 2418-2436 CrossRef Google Scholar

[24] Minobe S, Kuwano-yoshida A, Komori N, Xie S P, Small R J. Influence of the gulf stream on the troposphere. Nature, 2008, 452: 206-209 CrossRef ADS Google Scholar

[25] Mlawer E J, Taubman S J, Brown P D, Iacono M J, Clough S A. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J Geophys Res, 1997, 102: 16663-16682 CrossRef ADS Google Scholar

[26] Nakamura H, Lin G, Yamagata T. Decadal climate variability in the north pacific during the recent decades. Bull Amer Meteor Soc, 1997, 78: 2215-2225 CrossRef Google Scholar

[27] Nakamura H, Kazmin A S. Decadal changes in the North Pacific oceanic frontal zones as revealed in ship and satellite observations. J Geophys Res, 2003, 108: 3078 CrossRef ADS Google Scholar

[28] Nakamura H, Sampe T, Tanimoto Y, Shimpo A. Observed associations among storm tracks, jet streams and midlatitude oceanic fronts. Geophys Monogr, 2004, 147: 329-345 Google Scholar

[29] Nakamura H, Shimpo A. Seasonal variations in the southern hemisphere storm tracks and jet streams as revealed in a reanalysis dataset. J Clim, 2004, 17: 1828-1844 CrossRef Google Scholar

[30] Nakamura H, Sampe T, Goto A, Ohfuchi W, Xie S P. On the importance of midlatitude oceanic frontal zones for the mean state and dominant variability in the tropospheric circulation. Geophys Res Lett, 2008, 35: 971-978 Google Scholar

[31] Nakamura M, Yamane S. Dominant anomaly patterns in the near-surface baroclinicity and accompanying anomalies in the atmosphere and oceans. Part I: North Atlantic basin. J Clim, 2009, 22: 880-904 Google Scholar

[32] Nakamura M, Yamane S. Dominant anomaly patterns in the near-surface baroclinicity and accompanying anomalies in the atmosphere and oceans. Part II: North Pacific basin. J Clim, 2010, 23: 6445-6467 Google Scholar

[33] Nie Y, Zhang Y, Yang X Q, Chen G. Baroclinic anomalies associated with the southern hemisphere annular mode: Roles of synoptic and low-frequency eddies. Geophys Res Lett, 2013, 40: 2361-2366 CrossRef ADS Google Scholar

[34] Nonaka M, Nakamura H, Taguchi B, Komori N, Kuwano-yoshida A, Takaya K. Air–sea heat exchanges characteristic of a prominent midlatitude oceanic front in the south indian ocean as simulated in a high-resolution coupled GCM. J Clim, 2009, 22: 6515-6535 CrossRef Google Scholar

[35] Nonaka M, Nakamura H, Tanimoto Y, Kagimoto T, Sasaki H. Interannual-to-decadal variability in the oyashio and its influence on temperature in the subarctic frontal zone: An eddy-resolving OGCM simulation. J Clim, 2008, 21: 6283-6303 CrossRef ADS Google Scholar

[36] Peixoto J P, Oort A H. 1992. Physics of Climate. American Institute of Physics. 520. Google Scholar

[37] Rayner N A, Parker D E, Horton E B, Folland C K, Alexander L V, Rowell D P. Global analyses of SST sea ice and night marine air temperature since the late nineteenth century. J Geoghys Res, 2003, 108: 1063-1082 Google Scholar

[38] Reynolds R W, Smith T M, Liu C, Chelton D B, Casey K S, Schlax M G. Daily high-resolution-blended analyses for sea surface temperature. J Clim, 2007, 20: 5473-5496 CrossRef ADS Google Scholar

[39] Roden G I. On North Pacific temperature, salinity, sound velocity and density frontsand their relation to the wind and energy flux fields. J Phys Oceanogr, 1975, 5: 557-571 CrossRef Google Scholar

[40] Roden G I. On the variability of surface temperature fronts in the western Pacific, as detected by satellite. J Geophys Res, 1980, 85: 2704 CrossRef ADS Google Scholar

[41] Sampe T, Nakamura H, Goto A, Ohfuchi W. Significance of a midlatitude SST frontal zone in the formation of a storm track and an eddy-driven westerly jet. J Clim, 2010, 23: 1793-1814 CrossRef Google Scholar

[42] Skamarock W C, Klemp J B, Dudhia J, Gill D O, Barker D M, Wang W, Powers J G. 2005. A description of the advanced research WRF version 2. National Center For Atmospheric Research Boulder Co Mesoscale and Microscale Meteorology Div. Google Scholar

[43] Small R J, Deszoeke S P, Xie S P, O’neill L, Seo H, Song Q, Cornillon P, Spall M, Minobe S. Air–sea interaction over ocean fronts and eddies. Dyn Atmos Ocean, 2008, 45: 274-319 CrossRef ADS Google Scholar

[44] Taguchi B, Nakamura H, Nonaka M, Komori N, Kuwano-yoshida A, Takaya K, Goto A. Seasonal evolutions of atmospheric response to decadal SST anomalies in the North Pacific subarctic frontal zone: Observations and a coupled model simulation. J Clim, 2012, 25: 111-139 CrossRef Google Scholar

[45] Taguchi B, Nakamura H, Nonaka M, Xie S P. Influences of the Kuroshio/Oyashio Extensions on air-sea heat exchanges and storm-track activity as revealed in regional atmospheric model simulations for the 2003/04 cold season. J Clim, 2009, 22: 6536-6560 CrossRef Google Scholar

[46] Tanimoto Y, Kanenari T, Tokinaga H, Xie S P. Sea level pressure minimum along the Kuroshio and its extension. J Clim, 2011, 24: 4419-4434 CrossRef ADS Google Scholar

[47] Thompson G, Rasmussen R M, Manning K. Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part I: Description and sensitivity analysis. Mon Weather Rev, 132: 2004, : 519-542 Google Scholar

[48] Tokinaga H, Tanimoto Y, Xie S P, Sampe T, Tomita H, Ichikawa H. Ocean frontal effects on the vertical development of clouds over the Western North Pacific: In situ and satellite observations. J Clim, 2009, 22: 4241-4260 CrossRef Google Scholar

[49] Uda M, Hasunuma K. The eastward subtropical countercurrent in the western North Pacific Ocean. J Oceanogr Soc Japan, 1969, 25: 201-210 Google Scholar

[50] Wallace J M, Mitchell T P, Deser C. The influence of sea-surface temperature on surface wind in the Eastern Equatorial Pacific: Seasonal and interannual variability. J Clim, 1989, 2: 1492-1499 CrossRef Google Scholar

[51] Xie S P. Satellite observations of cool ocean-atmosphere interaction. Bull Amer Meteor Soc, 2004, 85: 195-208 CrossRef ADS Google Scholar

[52] Xu H, Tokinaga H, Xie S P. Atmospheric effects of the Kuroshio large meander during 2004–05. J Clim, 2010, 23: 4704-4715 CrossRef Google Scholar

[53] Xu H, Xu M, Xie S P, Wang Y. Deep atmospheric response to the spring Kuroshio over the East China Sea. J Clim, 2011, 24: 4959-4972 CrossRef ADS Google Scholar

[54] Yasuda I. Hydrographic structure and variability in the Kuroshio-Oyashio transition area. J Oceanography, 2003, 59: 389-402 CrossRef Google Scholar

[55] Yu L, Jin X, Weller R A. Multidecade Global Flux Datasets from the Objectively Analyzed Air-sea Fluxes (OAFlux) Project: Latent and sensible heat fluxes, ocean evaporation, and related surface meteorological variables. OAFlux Project Technical Report. OA-2008-01, 2008, : 64 Google Scholar

[56] Yuan X, Talley L D. The subarctic frontal zone in the North Pacific: Characteristics of frontal structure from climatological data and synoptic surveys. J Geophys Res, 1996, 101: 16491-16508 CrossRef ADS Google Scholar

  • 图 1


  • 图 2


  • 图 3


  • 图 4


  • 图 5


  • 图 6


  • 图 7


  • 图 8


  • 图 9


  • 图 10


  • 图 11


  • 图 12


  • 表 1   数值模式设置介绍





    副热带海洋锋强年海温下边界+副热带海洋锋强年大气侧边界. 具体包括: (2002年海温场+2002年大气侧边界、2005年海温场+2005年大气侧边界), 将以上试验结果平均后代表本组试验.


    副热带海洋锋弱年海温下边界+副热带海洋锋弱年大气侧边界. 具体包括: (2008年海温场+2008年大气侧边界、2010年海温场+2010年大气侧边界), 将以上试验结果平均后代表本组试验.



    副热带海洋锋弱年海温下边界+副热带海洋锋强年大气侧边界. 具体包括: (2008年海温场+2002年大气侧边界、2008年海温场+2005年大气侧边界、2010年海温场+2002年大气侧边界、2010年海温场+2005年大气侧边界), 将以上试验结果平均后代表本组试验.


    副热带海洋锋强年海温下边界+副热带海洋锋弱年大气侧边界. 具体包括: (2002年海温场+2008年大气侧边界、2002年海温场+2010年大气侧边界、2005年海温场+2008年大气侧边界、2005年海温场+2010年大气侧边界), 将以上试验结果平均后代表本组试验.



Contact and support