logo

SCIENTIA SINICA Vitae, Volume 49 , Issue 4 : 519-530(2019) https://doi.org/10.1360/N052018-00229

From cryptic species to biodiversity conservation in China: Status and prospects

More info
  • ReceivedOct 21, 2018
  • AcceptedJan 30, 2019
  • PublishedApr 9, 2019

Abstract


Funded by

国家自然科学基金(31622052,31090250)

中国科学院中国生物多样性监测与研究网络项目(Sino,BON)

中国西南野生生物种质资源库动物分库(国家重大科技基础设施专项)


Acknowledgment

感谢中国科学院动物研究所李枢强老师对本文提出的宝贵意见.


References

[1] Naeem S, Iii F S C, Costanza R, et al. Biodiversity and ecosystem functioning: Maintaining natural life support processes. Issues Ecol, 1999, 4: 2–12. Google Scholar

[2] Hoffmann M, Hilton-Taylor C, Angulo A, et al. The impact of conservation on the status of the world’s vertebrates. Science, 2010, 330: 1503-1509 CrossRef PubMed ADS Google Scholar

[3] Wake D B, Vredenburg V T. Are we in the midst of the sixth mass extinction? A view from the world of amphibians. Proc Natl Acad Sci USA, 2008, 105: 11466-11473 CrossRef PubMed ADS Google Scholar

[4] Costello M J, May R M, Stork N E. Response to comments on “Can we name Earth’s species before they go extinct?”. Science, 2013, 341: 237 CrossRef PubMed ADS Google Scholar

[5] Costello M J, Wilson S, Houlding B. Predicting total global species richness using rates of species description and estimates of taxonomic effort. Systatic Biol, 2012, 61: 871-883 CrossRef PubMed Google Scholar

[6] Fennessy J, Bidon T, Reuss F, et al. Multi-locus analyses reveal four giraffe species instead of one. Curr Biol, 2016, 26: 2543-2549 CrossRef PubMed Google Scholar

[7] Winker K. Sibling species were first recognized by William Derham (1718). Auk, 2005, 122: 706-707 CrossRef Google Scholar

[8] Bickford D, Lohman D J, Sodhi N S, et al. Cryptic species as a window on diversity and conservation. Trends Ecol Evol, 2007, 22: 148-155 CrossRef PubMed Google Scholar

[9] Heethoff M. Cryptic species—Conceptual or terminological chaos? A response to Struck et al. Trends Ecol Evol, 2018, 33: 310 CrossRef Google Scholar

[10] Mayden R L. A hierarchy of species concepts: The denouement in the saga of the species problem. In: Claridge M F, Dawah H A, Wilson M R, eds. Species. The Units of Biodiversity. London: Chapman and Hall, 1997. 381–423. Google Scholar

[11] de Queiroz K. The general lineage concept of species, species criteria, and the process of speciation and terminological recommendations. In: Howard D J, Berlocher S H, eds. Endless Forms: Species and Speciation. Oxford: Oxford University Press, 1998. 57–75. Google Scholar

[12] de Queiroz K. Different species problems and their resolution. BioEssays, 2005, 27: 1263-1269 CrossRef PubMed Google Scholar

[13] de Queiroz K. Species concepts and species delimitation. Systatic Biol, 2007, 56: 879-886 CrossRef PubMed Google Scholar

[14] Struck T H, Feder J L, Bendiksby M, et al. Finding evolutionary processes hidden in cryptic species. Trends Ecol Evol, 2018, 33: 153-163 CrossRef PubMed Google Scholar

[15] Fišer C, Robinson C T, Malard F. Cryptic species as a window into the paradigm shift of the species concept. Mol Ecol, 2018, 27: 613-635 CrossRef PubMed Google Scholar

[16] Mayr E. Animal species and evolution. Human Biol, 1964, 4: 398–401. Google Scholar

[17] Narins P M. Divergence of acoustic communication systems of two sibling species of eleutherodactylid frogs. Copeia, 1983, 1983: 1089 CrossRef Google Scholar

[18] Henry C S. Singing and cryptic speciation insects. Trends Ecol Evol, 1994, 9: 388-392 CrossRef Google Scholar

[19] Jones G, Barlow K E. Cryptic species of echolocating bats. In: Thomas J A, Moss C, Vater M, eds. Echolocation in Bats and Dolphins. Chicago: University Of Chicago Press, 2003. 345–349. Google Scholar

[20] Cicero C. Sibling Species of Titmice in the Parus inornatus Complex (Aves: Paridae). California: University of California Press, 1996. 1–217. Google Scholar

[21] Schönrogge K, Barr B, Wardlaw J C, et al. When rare species become endangered: Cryptic speciation in myrmecophilous hoverflies. Biol J Linnean Soc, 2002, 75: 291-300 CrossRef Google Scholar

[22] Rothschild L J, Mancinelli R L. Life in extreme environments. Nature, 2001, 409: 1092-1101 CrossRef PubMed Google Scholar

[23] Nevo E. Evolution of genome-phenome diversity under environmental stress. Proc Natl Acad Sci USA, 2001, 98: 6233-6240 CrossRef PubMed ADS Google Scholar

[24] Vrijenhoek R C, Schutz S J, Gustafson R G, et al. Cryptic species of deep-sea clams (Mollusca: Bivalvia: Vesicomyidae) from hydrothermal vent and cold-water seep environments. Deep Sea Res Part I-Oceanographic Res Papers, 1994, 41: 1171-1189 CrossRef ADS Google Scholar

[25] Grundt H H, Kjølner S, Borgen L, et al. High biological species diversity in the arctic flora. Proc Natl Acad Sci USA, 2006, 103: 972-975 CrossRef PubMed ADS Google Scholar

[26] Lefébure T, Douady C J, Gouy M, et al. Phylogeography of a subterranean amphipod reveals cryptic diversity and dynamic evolution in extreme environments. Mol Ecol, 2006, 15: 1797-1806 CrossRef PubMed Google Scholar

[27] Appeltans W, Ahyong S T, Anderson G, et al. The magnitude of global marine species diversity. Curr Biol, 2012, 22: 2189-2202 CrossRef PubMed Google Scholar

[28] Reidenbach K R, Neafsey D E, Costantini C, et al. Patterns of genomic differentiation between ecologically differentiated M and S forms of Anopheles gambiae in West and Central Africa. Genome Biol Evol, 2012, 4: 1202-1212 CrossRef PubMed Google Scholar

[29] Knowlton N. Sibling species in the sea. Annu Rev Ecol Syst, 1993, 24: 189-216 CrossRef Google Scholar

[30] Gustafsson A L S, Skrede I, Rowe H C, et al. Genetics of cryptic speciation within an arctic mustard, Draba nivalis. PLoS ONE, 2014, 9: e93834 CrossRef PubMed ADS Google Scholar

[31] Felsenstein J. Phylogenies and the comparative method. Am Natist, 1985, 125: 1-15 CrossRef Google Scholar

[32] Bensch S, Péarez-Tris J, Waldenströum J, et al. Linkage between nuclear and mitochondrial DNA sequences in avian malaria parasites: Multiple cases of cryptic speciation?. Evolution, 2004, 58: 1617-1621 CrossRef Google Scholar

[33] Damm S, Schierwater B, Hadrys H. An integrative approach to species discovery in odonates: From character-based DNA barcoding to ecology. Mol Ecol, 2010, 19: 3881-3893 CrossRef PubMed Google Scholar

[34] Derycke S, De Meester N, Rigaux A, et al. Coexisting cryptic species of the Litoditis marina complex (Nematoda) show differential resource use and have distinct microbiomes with high intraspecific variability. Mol Ecol, 2016, 25: 2093-2110 CrossRef PubMed Google Scholar

[35] Hebert P D N, Cywinska A, Ball S L, et al. Biological identifications through DNA barcodes. Proc R Soc London Ser B-Biol Sci, 2003, 270: 313-321 CrossRef PubMed Google Scholar

[36] Saitou N, Nei M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol Biol Evol, 1987, 4: 406 CrossRef PubMed Google Scholar

[37] Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol, 1980, 16: 111-120 CrossRef ADS Google Scholar

[38] Reid N M, Carstens B C. Phylogenetic estimation error can decrease the accuracy of species delimitation: A Bayesian implementation of the general mixed Yule-coalescent model. BMC Evol Biol, 2012, 12: 196 CrossRef PubMed Google Scholar

[39] Puillandre N, Lambert A, Brouillet S, et al. ABGD, automatic barcode gap discovery for primary species delimitation. Mol Ecol, 2012, 21: 1864-1877 CrossRef PubMed Google Scholar

[40] Zhang J, Kapli P, Pavlidis P, et al. A general species delimitation method with applications to phylogenetic placements. Bioinformatics, 2013, 29: 2869-2876 CrossRef PubMed Google Scholar

[41] Leaché A D, Fujita M K, Minin V N, et al. Species delimitation using genome-wide SNP data. Systatic Biol, 2014, 63: 534-542 CrossRef PubMed Google Scholar

[42] Yang Z, Rannala B. Bayesian species delimitation using multilocus sequence data. Proc Natl Acad Sci USA, 2010, 107: 9264-9269 CrossRef PubMed ADS Google Scholar

[43] Flot J F, Couloux A, Tillier S. Haplowebs as a graphical tool for delimiting species: A revival of Doyle’s “field for recombination” approach and its application to the coral genus Pocillopora in Clipperton. BMC Evol Biol, 2010, 10: 372 CrossRef PubMed Google Scholar

[44] Pritchard J K, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics, 2000, 155: 945–959. Google Scholar

[45] Alexander D H, Novembre J, Lange K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res, 2009, 19: 1655-1664 CrossRef PubMed Google Scholar

[46] Excoffier L, Laval G, Schneider S. Arlequin (version 3.0): An integrated software package for population genetics data analysis. Evol Bioinform Online, 2005, 1: 117693430500100 CrossRef Google Scholar

[47] Raymond M, Rousset F. GENEPOP (version 1.2): Population genetics software for exact tests and ecumenicism. J Hered, 1995, 86: 248-249 CrossRef Google Scholar

[48] Buerkle C A. Maximum-likelihood estimation of a hybrid index based on molecular markers. Mol Ecol Notes, 2005, 5: 684-687 CrossRef Google Scholar

[49] Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol Ecol, 2005, 14: 2611-2620 CrossRef PubMed Google Scholar

[50] Jones G. STACEY: Species delimitation and phylogeny estimation under the multispecies coalescent. Available from https://doi.org/10.1101/010199. Google Scholar

[51] Bryant D, Bouckaert R, Felsenstein J, et al. Inferring species trees directly from biallelic genetic markers: Bypassing gene trees in a full coalescent analysis. Mol Biol Evol, 2012, 29: 1917-1932 CrossRef PubMed Google Scholar

[52] Grummer J A, Bryson Jr. R W, Reeder T W. Species delimitation using Bayes factors: Simulations and application to the Sceloporus scalaris species group (Squamata: Phrynosomatidae). Systatic Biol, 2013, 63: 119-133 CrossRef PubMed Google Scholar

[53] Eriksson A, Manica A. Effect of ancient population structure on the degree of polymorphism shared between modern human populations and ancient hominins. Proc Natl Acad Sci USA, 2012, 109: 13956-13960 CrossRef PubMed ADS Google Scholar

[54] Liu Z, Chen G, Zhu T, et al. Prevalence of cryptic species in morphologically uniform taxa—Fast speciation and evolutionary radiation in Asian frogs. Mol Phylogenets Evol, 2018, 127: 723-731 CrossRef PubMed Google Scholar

[55] Wang Y, Zhao J, Yang J, et al. Morphology, molecular genetics, and bioacoustics support two new sympatric Xenophrys toads (Amphibia: Anura: Megophryidae) in Southeast China. PLoS ONE, 2014, 9: e93075 CrossRef PubMed ADS Google Scholar

[56] Elzinga J A, Mappes J, Kaila L. Pre- and post-mating reproductive barriers drive divergence of five sympatric species of Naryciinae moths (Lepidoptera: Psychidae). Biol J Linn Soc Lond, 2014, 112: 584-605 CrossRef Google Scholar

[57] Ratnasingham S, Hebert P D N. BOLD: The barcode of life data system (http://www.barcodinglife.org). Mol Ecol Notes, 2007, 7: 355-364 CrossRef PubMed Google Scholar

[58] Becker S, Hanner R, Steinke D. Five years of FISH-BOL: Brief status report. Mitochondrial DNA, 2011, 22: 3-9 CrossRef PubMed Google Scholar

[59] Lijtmaer D A, Kerr K C R, Stoeckle M Y, et al. DNA barcoding birds: From field collection to data analysis. In: Kress W, Erickson D, eds. DNA Barcodes. Methods in Molecular Biology (Methods and Protocols). Totowa: Humana Press, 2012. Google Scholar

[60] Hamilton A J, Basset Y, Benke K K, et al. Quantifying uncertainty in estimation of tropical arthropod species richness. Am Natist, 2012, 176: 90-95 CrossRef PubMed Google Scholar

[61] Hamilton A J, Basset Y, Benke K K, et al. Errata: Quantifying uncertainty of tropical arthropod species richness. Am Natist, 2011, 177: 544-545 CrossRef Google Scholar

[62] Joppa L N, Roberts D L, Pimm S L. How many species of flowering plants are there?. Proc R Soc B, 2011, 278: 554-559 CrossRef PubMed Google Scholar

[63] Bucklin A, Steinke D, Blanco-Bercial L. DNA barcoding of marine metazoa. Annu Rev Mar Sci, 2011, 3: 471-508 CrossRef PubMed ADS Google Scholar

[64] Hebert P D N, Ratnasingham S, de Waard J R. Barcoding animal life: Cytochrome C oxidase subunit 1 divergences among closely related species. Proc R Soc London Ser B-Biol Sci, 2003, 270: S96 CrossRef PubMed Google Scholar

[65] Lahaye R, van der Bank M, Bogarin D, et al. DNA barcoding the floras of biodiversity hotspots. Proc Natl Acad Sci USA, 2008, 105: 2923-2928 CrossRef PubMed ADS Google Scholar

[66] Schoch C L, Seifert K A, Huhndorf S, et al. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc Natl Acad Sci USA, 2012, 109: 6241-6246 CrossRef PubMed ADS Google Scholar

[67] Bossu C M, Near T J. Gene trees reveal repeated instances of mitochondrial DNA introgression in orangethroat darters (Percidae: Etheostoma). Systatic Biol, 2009, 58: 114-129 CrossRef PubMed Google Scholar

[68] Chan K M A, Levin S A. Leaky prezygotic isolation and porous genomes: Rapid introgression of maternally inherited DNA. Evolution, 2005, 59: 720-729 CrossRef Google Scholar

[69] Janzen D H, Burns J M, Cong Q, et al. Nuclear genomes distinguish cryptic species suggested by their DNA barcodes and ecology. Proc Natl Acad Sci USA, 2017, 114: 8313-8318 CrossRef PubMed Google Scholar

[70] Wang G D, Zhang B L, Zhou W W, et al. Selection and environmental adaptation along a path to speciation in the Tibetan frog Nanorana parkeri. Proc Natl Acad Sci USA, 2018, 115: E5056-E5065 CrossRef PubMed Google Scholar

[71] Zhou W, Zhang B, Chen H, et al. DNA barcodes and species distribution models evaluate threats of global climate changes to genetic diversity: A case study from Nanorana parkeri (Anura: Dicroglossidae). PLoS ONE, 2014, 9: e103899 CrossRef PubMed ADS Google Scholar

[72] Gregory T R. Animal Genome Size Database. 2005, http://www.genomesize.com. Google Scholar

[73] Liedtke H C, Gower D J, Wilkinson M, et al. Macroevolutionary shift in the size of amphibian genomes and the role of life history and climate. Nat Ecol Evol, 2018, 2: 1792-1799 CrossRef PubMed Google Scholar

[74] Yan F, Lü J, Zhang B, et al. The Chinese giant salamander exemplifies the hidden extinction of cryptic species. Curr Biol, 2018, 28: R590-R592 CrossRef PubMed Google Scholar

[75] Xu H, Wu J, Liu Y, et al. Biodiversity congruence and conservation strategies: A national test. BioScience, 2008, 58: 632-639 CrossRef Google Scholar

[76] Sun S, Li Q, Kong L, et al. DNA barcoding reveal patterns of species diversity among northwestern Pacific molluscs. Sci Rep, 2016, 6: 33367 CrossRef PubMed ADS Google Scholar

[77] Chen J M, Zhou W W, Poyarkov Jr. N A, et al. A novel multilocus phylogenetic estimation reveals unrecognized diversity in Asian horned toads, genus Megophrys sensu lato (Anura: Megophryidae). Mol Phylogenets Evol, 2017, 106: 28-43 CrossRef PubMed Google Scholar

[78] Chen J M, Poyarkov Jr. N A, Suwannapoom C, et al. Large-scale phylogenetic analyses provide insights into unrecognized diversity and historical biogeography of Asian leaf-litter frogs, genus Leptolalax (Anura: Megophryidae). Mol Phylogenets Evol, 2018, 124: 162-171 CrossRef PubMed Google Scholar

[79] Lu L, Fritsch P W, Cruz B C, et al. Reticulate evolution, cryptic species, and character convergence in the core East Asian clade of Gaultheria (Ericaceae). Mol Phylogenets Evol, 2010, 57: 364-379 CrossRef PubMed Google Scholar

[80] Liu J, Möller M, Provan J, et al. Geological and ecological factors drive cryptic speciation of yews in a biodiversity hotspot. New Phytol, 2013, 199: 1093-1108 CrossRef PubMed Google Scholar

[81] Yu W B, Randle C P, Lu L, et al. The hemiparasitic plant Phtheirospermum (Orobanchaceae) is polyphyletic and contains cryptic species in the Hengduan Mountains of Southwest China. Front Plant Sci, 2018, 9: 142 CrossRef PubMed Google Scholar

[82] Roca A L, Georgiadis N, Pecon-Slattery J, et al. Genetic evidence for two species of elephant in Africa. Science, 2001, 293: 1473-1477 CrossRef PubMed ADS Google Scholar

[83] Zhou X, Guang X, Sun D, et al. Population genomics of finless porpoises reveal an incipient cetacean species adapted to freshwater. Nat Commun, 2018, 9: 1276 CrossRef PubMed ADS Google Scholar

[84] Yang X Y. Cryptic species diversity and molecular phylogeography of the endangered aquatic fern Ceratoperis thalictroides (in Chinese). Dissertation for Doctoral Degree. Wuhan: Wuhan University, 2015 [杨星宇. 濒危水生蕨类植物水蔽的隐种多样性及分子谱系地理学研究. 博士学位论文. 武汉: 武汉大学, 2015]. Google Scholar

[85] Barro P J D, Liu S S, Boykin L M, et al. Bemisia tabaci: A statement of species status. Ann Rev Entomol, 2011, 56: 1–19. Google Scholar

[86] Xu J, De Barro P J, Liu S S. Reproductive incompatibility among genetic groups of Bemisia tabaci supports the proposition that the whitefly is a cryptic species complex. Bull Entomol Res, 2010, 100: 359-366 CrossRef PubMed Google Scholar

[87] Horowitz A R, Kontsedalov S, Khasdan V, et al. Biotypes B and Q of Bemisia tabaci and their relevance to neonicotinoid and pyriproxyfen resistance. Arch Insect Biochem Physiol, 2005, 58: 216-225 CrossRef PubMed Google Scholar

[88] Bian H X, Mu C Q, Guo X J, et al. Control effects and toxicities of six insecticides against Bemisia tabaci Q biotype (in Chinese). Plant Protect, 2011, 37: 201–205 [边海霞, 穆常青, 郭晓军, 等. 6种杀虫剂对Q型烟粉虱的田间防治效果及抗性测定. 植物保护, 2011, 37: 201–205]. Google Scholar

[89] Rao Q, Xu Y, Luo C, et al. Characterisation of neonicotinoid and pymetrozine resistance in strains of Bemisia tabaci (Hemiptera: Aleyrodidae) from China. J Integr Agricul, 2012, 11: 321-326 CrossRef Google Scholar

[90] WHO. World Malaria Report 2016. Geneva: World Health Organization, 2017. Google Scholar

[91] Besansky N J. Complexities in the analysis of cryptic taxa within the genus Anopheles. Parassitologia, 1999, 41: 97. Google Scholar

[92] Fang Y, Shi W Q, Zhang Y. Molecular phylogeny of Anopheles hyrcanus group members based on ITS2 rDNA. Parasites Vectors, 2017, 10: 417 CrossRef PubMed Google Scholar

[93] Hou X, Xiao M, Chen S C A, et al. Identification and antifungal susceptibility profiles of Candida nivariensis and Candida bracarensis in a multi-center chinese collection of yeasts. Front Microbiol, 2017, 8: fov114 CrossRef Google Scholar

[94] Xie G D, Cao S Y, Yang Q S, et al. Living Planet Report-China 2015. Beijing: World Wildlife Fund, 2015. Google Scholar

[95] Ge J W. Current status and conservation strategy of China biodiversity (in Chinese). J Anhui Agri Sci, 2009, 37: 5066–5067 [葛家文. 中国生物多样性现状及保护对策. 安徽农业科学, 2009, 37: 5066–5067]. Google Scholar

  • Figure 1

    Trend of cryptic species research in global range (till September 2018)

  • Figure 2

    Trend of cryptic species research in China (classified by molecular technology)

  • Table 1   General description of research directions of cryptic species in China

    类群*

    国内发表论文数量(篇)1985~2018年

    主要研究方向/研究目的(篇)

    物种多样性评估

    濒危物种保护

    入侵生物

    疾病防控

    其他

    动物界(Animalia)

    节肢动物门(Arthropoda)

    昆虫纲(Insecta)

    266

    33

    218

    8

    8

    甲壳亚门(Crustacea)

    10

    8

    2

    蛛形纲(Arachnida)

    4

    2

    1

    1

    颚足纲(Maxillopoda)

    1

    1

    软甲纲(Malacostraca)

    1

    1

    脊索动物门(Chordata)

    两栖纲(Amphibia)

    38

    30

    2

    6

    鱼纲(Pisces)

    28

    25

    1

    2

    哺乳纲(Mammalia)

    17

    13

    1

    3

    爬行纲(Reptilia)

    9

    7

    2

    鸟纲(Aves)

    2

    2

    软体动物门(Mollusca)

    双壳纲(Bivalvia)

    16

    16

    腹足纲(Gastropoda)

    10

    9

    1

    头足纲(Cephalopoda)

    7

    7

    多板纲(Polyplacophora)

    1

    1

    瓣鳃纲(Lamellibranchia )

    1

    1

    扁形动物门(Platyhelminthes)

    绦虫纲(Cestoidea)

    7

    7

    吸虫纲(Trematoda)

    2

    2

    线虫门(Nematoda)

    胞管肾纲(Secernentea)

    4

    2

    2

    色矛纲(Chromadorea)

    2

    1

    1

    Enoplea纲

    2

    1

    1

    轮虫动物门(Rotifera)

    单巢纲(Monogononta)

    10

    8

    2

    巢纲(Bdelloidea)

    1

    1

    纽形动物门(Nemertea)

    无针纲(Anopla)

    1

    1

    星虫动物门(Sipuncula)

    方格星虫纲(Sipunculidea)

    2

    2

    棘皮动物门(Echinodermata)

    海星亚纲(Asteroidea)

    1

    1

    缓步动物门(Tardigrata)

    异缓步纲(Heterotardigrada)

    1

    1

    植物界(Plantae)

    被子植物亚门(Angiosperms)

    真双子叶植物纲(Eudicots)

    7

    5

    2

    双子叶植物纲(Dicotyledoneae)

    2

    2

    单子叶植物纲(Monocots)

    5

    3

    2

    红藻门(Rhodophyta)

    红毛菜纲(Bangiophyceae)

    1

    1

    红藻纲(Florideophyceae)

    1

    1

    绿藻门(Chlorophyta)

    绿藻纲(Chlorophyceae)

    5

    1

    4

    共球藻纲(Trebouxiophyceae)

    1

    1

    Ulvophyceae纲

    1

    1

    蕨类植物门(Pteridophyta)

    真蕨纲(Polypodiopsida/Pteridopsida)

    6

    5

    1

    苔类植物门(Marchantiophyta)

    叶苔纲(Jungermanniopsida)

    2

    2

    裸子植物亚门(Gymnospermae)

    松柏纲(Pinopsida)

    4

    2

    2

    藓类植物门(Bryophyta)

    真藓纲(Bryopsida)

    2

    2

    真菌界(Fungi)

    子囊菌门(Ascomycota)

    子囊菌纲(Sordariomycetes)

    13

    4

    7

    2

    锤舌菌纲(Leotiomycetes)

    3

    2

    1

    茶渍纲(Lecanoromycetes)

    1

    1

    圆盘菌纲(Orbiliomycetes)

    2

    2

    散囊菌纲(Eurotiomycetes)

    1

    1

    座囊菌纲(dothideomycetes)

    2

    1

    1

    Saccharomycetes纲

    1

    1

    盘菌纲(Pezizomycetes)

    2

    2

    待定

    1

    1

    担子菌门(Basidiomycota)

    伞菌纲(Agaricomycetes)

    3

    3

    黑粉菌纲(Ustilaginomycetes)

    1

    1

    银耳纲(Tremellomycetes)

    1

    1

    原生生物界(Protozoa)

    纤毛门(Ciliophora)

    寡膜纲(Oligohymenophorea)

    3

    3

    Spirotrichea纲

    2

    2

    Prostomatea纲

    1

    1

    Phyllopharyngea纲

    1

    1

    双鞭毛虫门(Dinoflagellata)

    甲藻纲(Dinophyceae)

    2

    1

    1

    变形虫门(Amoebozoa)

    黏菌纲(Myxogastria)

    1

    1

    细菌界(Bacteria)

    蓝细菌门(Cyanobacteria)

    蓝藻纲(Cyanophyceae)

    1

    1

    病毒(Viruses)

    待定

    待定

    1

    1

    色素界(Chromista)

    褐藻门(Phaeophycophyta )

    褐藻纲(Phaeophyceae)

    1

    1

    该分类系统与物种2000中国节点(Species 2000 China Node, http://www.sp2000.org.cn/)一致, 部分分类阶元暂无中文名. 根据目前的统计来看国内隐存种研究大致可分为4个方向(表1): “区域物种多样性评估”方向主要以区域生物多样性评估及物种分类为重点. “濒危物种保护”方向主要涉及对濒危物种群体水平的研究. “入侵生物”与“疾病防控”则主要涉及入侵生物与致病性生物的研究, 两者均与人类自身的生活环境和健康息息相关.

qqqq

Contact and support