SCIENTIA SINICA Vitae, Volume 49 , Issue 4 : 484-497(2019) https://doi.org/10.1360/N052018-00210

Genomic evolution in polyploid vertebrates: Models and progress in research techniques

More info
  • ReceivedFeb 1, 2019
  • AcceptedMar 8, 2019
  • PublishedApr 15, 2019


Funded by





[1] Comai L. The advantages and disadvantages of being polyploid. Nat Rev Genet, 2005, 6: 836-846 CrossRef PubMed Google Scholar

[2] Otto S P, Whitton J. Polyploid incidence and evolution. Annu Rev Genet, 2000, 34: 401-437 CrossRef Google Scholar

[3] Adams K L. Evolution of duplicate gene expression in polyploid and hybrid plants. J Heredity, 2007, 98: 136-141 CrossRef PubMed Google Scholar

[4] Wendel J F. Genome evolution in polyploids. Plant Mol Biol, 2000, 42: 225-249 CrossRef Google Scholar

[5] Cui L, Wall P K, Leebens-Mack J H, et al. Widespread genome duplications throughout the history of flowering plants. Genome Res, 2006, 16: 738-749 CrossRef PubMed Google Scholar

[6] Tang H, Wang X, Bowers J E, et al. Unraveling ancient hexaploidy through multiply-aligned angiosperm gene maps. Genome Res, 2008, 18: 1944-1954 CrossRef PubMed Google Scholar

[7] Liu D C, Fang H. Study on the role of Chinese Ae. tauschii in the evolution of Chinese common wheat landraces (in Chinese). Southwest China J Agricul Sci, 2002, 16: 32–35 [刘登才, 房洪. 中国节节麦在中国特有小麦系统演化中的作用. 西南农业学报, 2003, 16: 32–35]. Google Scholar

[8] Parisod C, Christin P A. Genome-wide association to fine-scale ecological heterogeneity within a continuous population of Biscutella laevigata (Brassicaceae). New Phytol, 2008, 178: 436-447 CrossRef PubMed Google Scholar

[9] Paterson A H, Wendel J F, Gundlach H, et al. Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres. Nature, 2012, 492: 423-427 CrossRef PubMed ADS Google Scholar

[10] Volff J N. Genome evolution and biodiversity in teleost fish. Heredity, 2005, 94: 280-294 CrossRef PubMed Google Scholar

[11] Lokki J, Saura A. Polyploidy in insect evolution. Basic Life Sci, 1979, 13: 277–312. Google Scholar

[12] Bogart J P. Evolutionary implications of polyploidy in amphibians and reptiles. Basic Life Sci, 1979, 13: 341–378. Google Scholar

[13] Mable B K, Alexandrou M A, Taylor M I. Genome duplication in amphibians and fish: An extended synthesis. J Zool, 2011, 284: 151-182 CrossRef Google Scholar

[14] Rodriguez F, Arkhipova I R. Transposable elements and polyploid evolution in animals. Curr Opin Genets Dev, 2018, 49: 115-123 CrossRef PubMed Google Scholar

[15] McClintock B. The significance of responses of the genome to challenge. Science, 1984, 226: 792-801 CrossRef ADS Google Scholar

[16] Zhao N, Zhu B, Li M, et al. Extensive and heritable epigenetic remodeling and genetic stability accompany allohexaploidization of wheat. Genetics, 2011, 188: 499-510 CrossRef PubMed Google Scholar

[17] Zhang H, Bian Y, Gou X, et al. Persistent whole-chromosome aneuploidy is generally associated with nascent allohexaploid wheat. Proc Natl Acad Sci USA, 2013, 110: 3447-3452 CrossRef PubMed ADS Google Scholar

[18] Bao Y, Xu Q. Extensive reprogramming of cytosine methylation in Oryza allotetraploids. Genes Genom, 2015, 37: 517-524 CrossRef Google Scholar

[19] Liu S, Liu Y, Yang X, et al. The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes. Nat Commun, 2014, 5: 3930 CrossRef PubMed ADS Google Scholar

[20] Flagel L E, Wendel J F, Udall J A. Duplicate gene evolution, homoeologous recombination, and transcriptome characterization in allopolyploid cotton. BMC Genom, 2012, 13: 302 CrossRef PubMed Google Scholar

[21] Kirkbride R C, Yu H H, Nah G, et al. An epigenetic role for disrupted paternal gene expression in postzygotic seed abortion in Arabidopsis interspecific hybrids. Mol Plant, 2015, 8: 1766-1775 CrossRef PubMed Google Scholar

[22] Song Q, Guan X, Chen Z J. Dynamic roles for small RNAs and DNA methylation during ovule and fiber development in allotetraploid cotton. PLoS Genet, 2015, 11: e1005724 CrossRef PubMed Google Scholar

[23] Wang M, Yuan D, Tu L, et al. Long noncoding RNAs and their proposed functions in fibre development of cotton (Gossypium spp.). New Phytol, 2015, 207: 1181-1197 CrossRef PubMed Google Scholar

[24] Adams K L, Cronn R, Percifield R, et al. Genes duplicated by polyploidy show unequal contributions to the transcriptome and organ-specific reciprocal silencing. Proc Natl Acad Sci USA, 2003, 100: 4649-4654 CrossRef PubMed ADS Google Scholar

[25] Seijo J G, Kovalsky E I, Chalup L M I, et al. Karyotype stability and genome-specific nucleolar dominance in peanut, its wild 4× ancestor, and a synthetic AABB polyploid. Crop Sci, 2018, 58: 1671-1683 CrossRef Google Scholar

[26] Gao L, Diarso M, Zhang A, et al. Heritable alteration of DNA methylation induced by whole-chromosome aneuploidy in wheat. New Phytol, 2016, 209: 364-375 CrossRef PubMed Google Scholar

[27] Thorpe P H, González-Barrera S, Rothstein R. More is not always better: The genetic constraints of polyploidy. Trends Genets, 2007, 23: 263-266 CrossRef PubMed Google Scholar

[28] Chen Z J. Genetic and epigenetic mechanisms for gene expression and phenotypic variation in plant polyploids. Annu Rev Plant Biol, 2007, 58: 377-406 CrossRef PubMed Google Scholar

[29] Ni Z, Kim E D, Ha M, et al. Altered circadian rhythms regulate growth vigour in hybrids and allopolyploids. Nature, 2009, 457: 327-331 CrossRef PubMed ADS Google Scholar

[30] Lynch M, Conery J S. The evolutionary fate and consequences of duplicate genes. Science, 2000, 290: 1151-1155 CrossRef ADS Google Scholar

[31] Sémon M, Wolfe K H. Consequences of genome duplication. Curr Opin Genets Dev, 2007, 17: 505-512 CrossRef PubMed Google Scholar

[32] Mable B K. “Why polyploidy is rarer in animals than in plants”: Myths and mechanisms. Biol J Linnean Soc, 2004, 82: 453-466 CrossRef Google Scholar

[33] Wertheim B, Beukeboom L W, van de Zande L. Polyploidy in animals: Effects of gene expression on sex determination, evolution and ecology. Cytogenet Genome Res, 2013, 140: 256-269 CrossRef PubMed Google Scholar

[34] Wang J, Ye L H, Liu Q Z, et al. Rapid genomic DNA changes in allotetraploid fish hybrids. Heredity, 2015, 114: 601-609 CrossRef PubMed Google Scholar

[35] Gasser M. Genetic-ecological Investigations in Biscutella levigata L. Dissertation for Doctoral Degree. Gallenkirch: Swiss Federal Institute of Technology Zurich, 1986. Google Scholar

[36] Salmon A, Flagel L, Ying B, et al. Homoeologous nonreciprocal recombination in polyploid cotton. New Phytologist, 2010, 186: 123-134 CrossRef PubMed Google Scholar

[37] Xu Y, Zhao Q, Mei S, et al. Genomic and transcriptomic alterations following hybridisation and genome doubling in trigenomic allohexaploid Brassica carinata×Brassica rapa. Plant Biol, 2012, 14: 734-744 CrossRef PubMed Google Scholar

[38] Vandepoele K, De Vos W, Taylor J S, et al. Major events in the genome evolution of vertebrates: Paranome age and size differ considerably between ray-finned fishes and land vertebrates. Proc Natl Acad Sci USA, 2004, 101: 1638-1643 CrossRef PubMed ADS Google Scholar

[39] Hardie D C, Hebert P D. Genome-size evolution in fishes. Can J Fish Aquat Sci, 2004, 61: 1636-1646 CrossRef Google Scholar

[40] Ma W, Zhu Z H, Bi X Y, et al. Allopolyploidization is not so simple: Evidence from the origin of the tribe Cyprinini (Teleostei: Cypriniformes). Curr Mol Med, 2014, 14: 1331-1338 CrossRef Google Scholar

[41] Zhang G, Tian Y, Zhang J, et al. Hybrid de novo genome assembly of the Chinese herbal plant danshen (Salvia miltiorrhiza Bunge). Gigascience, 2015, 4: 62 CrossRef PubMed Google Scholar

[42] Stöck M, Ustinova J, Betto-Colliard C, et al. Simultaneous Mendelian and clonal genome transmission in a sexually reproducing, all-triploid vertebrate. Proc R Soc B-Biol Sci, 2012, 279: 1293-1299 CrossRef PubMed Google Scholar

[43] Gruber S L, Silva A P Z, Haddad C F B, et al. Cytogenetic analysis of Phyllomedusa distincta Lutz, 1950 (2n = 2x = 26), P. tetraploidea Pombal and Haddad, 1992 (2n = 4x = 52), and their natural triploid hybrids (2n = 3x = 39) (Anura, Hylidae, Phyllomedusinae). BMC Genet, 2013, 14: 75 CrossRef PubMed Google Scholar

[44] Song C, Liu S J, Xiao J, et al. Polyploid organisms. Sci China Life Sci, 2012, 55: 301-311 CrossRef PubMed Google Scholar

[45] Kawahara H. Production of triploid and gynogenetic diploid Xenopus by cold treatment. Dev Growth Differ, 1978, 20: 227-236 CrossRef Google Scholar

[46] Bogart J P, Bi K. Genetic and genomic interactions of animals with different ploidy levels. Cytogenet Genome Res, 2013, 140: 117-136 CrossRef PubMed Google Scholar

[47] Manning G J, Cole C J, Dessauer H C, et al. Hybridization between parthenogenetic lizards (Aspidoscelis neomexicana) and gonochoristic lizards (Aspidoscelis sexlineata viridis) in New Mexico: Ecological, morphological, cytological, and molecular context. Am Museum Novitates, 2005, 3492: 1 CrossRef Google Scholar

[48] Danielayn F, Arakelyan M, and Stepanyan I. The progress of microevolution in hybrids of Rock lizards of genus Darevskia. Biol J Armenia, 2008, 60: 147-156. Google Scholar

[49] Ravi V, Venkatesh B. Rapidly evolving fish genomes and teleost diversity. Curr Opin Genets Dev, 2008, 18: 544-550 CrossRef PubMed Google Scholar

[50] Amores A, Force A, Yan Y L, et al. Zebrafish hox clusters and vertebrate genome evolution. Science, 1998, 282: 1711-1714 CrossRef ADS Google Scholar

[51] Leggatt R A, Iwama G K. Occurrence of polyploidy in the fishes. Rev Fish Biol Fisheries, 2003, 13: 237-246 CrossRef Google Scholar

[52] Taylor J S, Braasch I, Frickey T, et al. Genome duplication, a trait shared by 22,000 species of ray-finned fish. Genome Res, 2000, 13: 382-390 CrossRef PubMed Google Scholar

[53] Phillips R, Ráb P. Chromosome evolution in the Salmonidae (Pisces): An update. Biol Rev, 2001, 76: 1-25 CrossRef Google Scholar

[54] Thorgaard G H and Gall G A E. Adult triploids in a rainbow trout family. Genetics, 1979, 93: 961–973. Google Scholar

[55] Arai R, Fish Karyotypes: A Check List. Tokyo: Springer Japan, 2011. Google Scholar

[56] Froese R, Pauly D, eds. FishBase. www.fishbase.org version (1/2015). 2015. Google Scholar

[57] Jose A. Carmona, Oris I. Sanjur, Ignacio Doadrio, et al. Hybridogenetic reproduction and maternal ancestry of polyploid iberian fish: The Tropidophoxinellus alburnoides complex. Genetics, 1997, 146: 983–993. Google Scholar

[58] Wu Y F, Kang B, Men Q, et al. Chromosome diversity of Tibetan fishs (in Chinese). Zool Res. 1999, 20: 258–264 [武云飞, 康斌, 门强, 等. 西藏鱼类染色体多样性的研究. 动物学研究, 1999, 20: 258–264]. Google Scholar

[59] Luo J, Gao Y, Ma W, et al. Tempo and mode of recurrent polyploidization in the Carassius auratus species complex (Cypriniformes, Cyprinidae). Heredity, 2014, 112: 415-427 CrossRef PubMed Google Scholar

[60] Liu X L, Jiang F F, Wang Z W, et al. Wider geographic distribution and higher diversity of hexaploids than tetraploids in Carassius species complex reveal recurrent polyploidy effects on adaptive evolution. Sci Rep, 2017, 7: 5395 CrossRef PubMed ADS Google Scholar

[61] Ren L, Gao X, Yang C, et al. Comparison of diploid and triploid Carassius auratus provides insights into adaptation to environmental change. Sci China Life Sci, 2018, 61: 1407-1419 CrossRef PubMed Google Scholar

[62] Liu S, Liu Y, Zhou G, et al. The formation of tetraploid stocks of red crucian carp×common carp hybrids as an effect of interspecific hybridization. Aquaculture, 2001, 192: 171-186 CrossRef Google Scholar

[63] Liu S, Qin Q, Xiao J, et al. The formation of the polyploid hybrids from different subfamily fish crossings and its evolutionary significance. Genetics, 2007, 176: 1023-1034 CrossRef PubMed Google Scholar

[64] Tao H F. Studies on the biological characteristics of the distant hybrids between koi carp and flower crucian carp (in Chinese). Dissertation for Master’s Degree. Changsha: Hunan Normal University, 2011 [陶穗菲. 锦鲤和花鲫远缘杂交后代生物学特性研究. 硕士学位论文. 长沙: 湖南师范大学, 2011]. Google Scholar

[65] Liu S, Qin Q, Wang Y, et al. Evidence for the formation of the male gynogenetic fish. Mar Biotech, 2010, 12: 160-172 CrossRef PubMed Google Scholar

[66] Liu S J. Fish Distant Hybridization (in Chinese). Beijing: Science Press, 2015. 1–274 [刘少军. 鱼类远缘杂交. 北京: 科学出版社, 2015. 1–274]. Google Scholar

[67] He W, Qin Q, Liu S, et al. Organization and variation analysis of 5S rDNA in different ploidy-level hybrids of red crucian carp×topmouth culter. PLoS ONE, 2012, 7: e38976 CrossRef PubMed ADS Google Scholar

[68] Xiao J. Establishment of hybrid strains between blunt snout bream and topmouth culter and their genetic characteristic research (in Chinese). Dissertation for Master’s Degree. Changsha: Hunan Normal University, 2013 [肖军. 异源鲂鲌杂交品系的建立及其遗传特性研究. 硕士学位论文. 长沙: 湖南师范大学. 2013]. Google Scholar

[69] Zhang Z H, Chen J, Li L, et al. Research advances in animal distant hybridization. Sci China Life Sci, 2014, 57: 889-902 CrossRef PubMed Google Scholar

[70] Hu J, Liu S, Xiao J, et al. Characteristics of diploid and triploid hybrids derived from female Megalobrama amblycephala Yih×male Xenocypris davidi Bleeker. Aquaculture, 2012, 364-365: 157-164 CrossRef Google Scholar

[71] He W, Xie L, Li T, et al. The formation of diploid and triploid hybrids of female grass carp × male blunt snout bream and their 5S rDNA analysis. BMC Genet, 2013, 14: 110 CrossRef PubMed Google Scholar

[72] Yu J, Hu S, Wang J, et al. A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science, 2002, 296: 79-92 CrossRef PubMed ADS Google Scholar

[73] Goff S A, Ricke D, Lan T H, et al. A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science, 2002, 296: 92-100 CrossRef PubMed ADS Google Scholar

[74] Zhang T, Hu Y, Jiang W, et al. Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement. Nat Biotech, 2015, 33: 531-537 CrossRef PubMed Google Scholar

[75] Li F, Fan G, Lu C, et al. Genome sequence of cultivated upland cotton (Gossypium hirsutum TM-1) provides insights into genome evolution. Nat Biotech, 2015, 33: 524-530 CrossRef PubMed Google Scholar

[76] Yang J, Liu D, Wang X, et al. The genome sequence of allopolyploid Brassica juncea and analysis of differential homoeolog gene expression influencing selection. Nat Genet, 2016, 48: 1225-1232 CrossRef PubMed Google Scholar

[77] Hegarty M J, Hiscock S J. Genomic clues to the evolutionary success of polyploid plants. Curr Biol, 2008, 18: R435-R444 CrossRef PubMed Google Scholar

[78] Wang J, Tian L, Madlung A, et al. Stochastic and epigenetic changes of gene expression in Arabidopsis polyploids. Genetics, 2004, 167: 1961-1973 CrossRef PubMed Google Scholar

[79] Ohno S. Evolution by gene duplication. London: George Alien & Unwin Ltd. Berlin, Heidelberg and New York: Springer-Verlag. 1970. Google Scholar

[80] Furlong R F, Holland P W H. Polyploidy in vertebrate ancestry: Ohno and beyond. Biol J Linnean Soc, 2004, 82: 425-430 CrossRef Google Scholar

[81] Dehal P, Boore J L. Two rounds of whole genome duplication in the ancestral vertebrate. PLoS Biol, 2005, 3: e314 CrossRef PubMed Google Scholar

[82] Donoghue P C J, Purnell M A. Genome duplication, extinction and vertebrate evolution. Trends Ecol Evol, 2005, 20: 312-319 CrossRef PubMed Google Scholar

[83] Meyer A, Van de Peer Y. From 2R to 3R: Evidence for a fish-specific genome duplication (FSGD). Bioessays, 2005, 27: 937-945 CrossRef PubMed Google Scholar

[84] Christoffels A, Koh E G L, Chia J M, et al. Fugu genome analysis provides evidence for a whole-genome duplication early during the evolution of ray-finned fishes. Mol Biol Evol, 2004, 21: 1146-1151 CrossRef PubMed Google Scholar

[85] Allendorf F W, Danzmann R G. Secondary tetrasomic segregation of MDH-B and preferential pairing of homeologues in rainbow trout. Genetics, 1997, 145: 1083–1092. Google Scholar

[86] Allendorf F W, Thorgaard G H. Tetraploidy and the evolution of salmonid fishes. In: Turner J B, ed. Evolutionary Genetics of Fishes. New York: Plenum Press Corp, 1984. 1–53. Google Scholar

[87] Berthelot C, Brunet F, Chalopin D, et al. The rainbow trout genome provides novel insights into evolution after whole-genome duplication in vertebrates. Nat Commun, 2014, 5: 3657 CrossRef PubMed ADS Google Scholar

[88] Lien S, Koop B F, Sandve S R, et al. The Atlantic salmon genome provides insights into rediploidization. Nature, 2016, 533: 200-205 CrossRef PubMed ADS Google Scholar

[89] de Boer J G, Yazawa R, Davidson W S, et al. Bursts and horizontal evolution of DNA transposons in the speciation of pseudotetraploid salmonids. BMC Genom, 2007, 8: 422 CrossRef PubMed Google Scholar

[90] Zardoya R, Doadrio I. Molecular evidence on the evolutionary and biogeographical patterns of european cyprinids. J Mol Evol, 1999, 49: 227-237 CrossRef ADS Google Scholar

[91] Gilles A, Lecointre G, Miquelis A, et al. Partial combination applied to phylogeny of European cyprinids using the mitochondrial control region. Mol Phylogenets Evol, 2001, 19: 22-33 CrossRef PubMed Google Scholar

[92] Cunha C, Mesquita N, Dowling T E, et al. Phylogenetic relationships of Eurasian and American cyprinids using cytochrome b sequences. J Fish Biol, 2002, 61: 929-944 CrossRef Google Scholar

[93] Liu H, Chen Y. Phylogeny of the East Asian cyprinids inferred from sequences of the mitochondrial DNA control region. Can J Zool, 2003, 81: 1938-1946 CrossRef Google Scholar

[94] Xu P, Zhang X, Wang X, et al. Genome sequence and genetic diversity of the common carp, Cyprinus carpio. Nat Genet, 2014, 46: 1212-1219 CrossRef PubMed Google Scholar

[95] Yang J, Chen X, Bai J, et al. The Sinocyclocheilus cavefish genome provides insights into cave adaptation. BMC Biol, 2016, 14: 1 CrossRef PubMed Google Scholar

[96] Liu Q, Qi Y, Liang Q, et al. The chimeric genes in the hybrid lineage of Carassius auratus cuvieri (♀)×Carassius auratus red var. (♂). Sci China Life Sci, 2018, 61: 1079-1089 CrossRef PubMed Google Scholar

[97] Qin Q, Cao L, Wang Y, et al. Correction to: Rapid genomic and genetic changes in the first generation of autotetraploid lineages derived from distant hybridization of Carassius auratus Red Var. (♀) × Megalobrama amblycephala (♂). Mar Biotech, 2019, doi: 10.1007/s10126-018-09872-9 CrossRef PubMed Google Scholar

[98] Liu S, Luo J, Chai J, et al. Genomic incompatibilities in the diploid and tetraploid offspring of the goldfish×common carp cross. Proc Natl Acad Sci USA, 2016, 113: 1327-1332 CrossRef PubMed ADS Google Scholar

[99] Li W, Liu J, Tan H, et al. Asymmetric expression patterns reveal a strong maternal effect and dosage compensation in polyploid hybrid fish. BMC Genom, 2018, 19: 517 CrossRef PubMed Google Scholar

[100] Ren L, Li W, Tao M, et al. Homoeologue expression insights into the basis of growth heterosis at the intersection of ploidy and hybridity in Cyprinidae. Sci Rep, 2016, 6: 27040 CrossRef PubMed ADS Google Scholar

[101] Li W, Tan H, Liu J, et al. Comparative analysis of testis transcriptomes associated with male infertility in triploid cyprinid fish. Reprod Fertil Dev, 2019, 31: 248-260 CrossRef PubMed Google Scholar

[102] Xu K, Wen M, Duan W, et al. Comparative analysis of testis transcriptomes from triploid and fertile diploid cyprinid fish. Biol Reprod, 2015, 92: 95 CrossRef Google Scholar

[103] Session A M, Uno Y, Kwon T, et al. Genome evolution in the allotetraploid frog Xenopus laevis. Nature, 2016, 538: 336-343 CrossRef PubMed ADS Google Scholar

[104] Nei M, Nozawa M. Roles of mutation and selection in speciation: From Hugo de Vries to the modern genomic era. Genome Biol Evol, 2011, 3: 812-829 CrossRef PubMed Google Scholar

[105] Otto S P. The evolutionary consequences of polyploidy. Cell, 2007, 131: 452-462 CrossRef PubMed Google Scholar

[106] Flagel L E, Wendel J F. Gene duplication and evolutionary novelty in plants. New Phytol, 2009, 183: 557-564 CrossRef PubMed Google Scholar

[107] Sankoff D, Zheng C, Zhu Q. Polyploids, genome halving and phylogeny. Bioinformatics, 2007, 23: i433-i439 CrossRef PubMed Google Scholar

[108] Abbott J C, Butcher S A. Strategies towards sequencing complex crop genomes. Genome Biol, 2012, 13: 322 CrossRef Google Scholar

[109] Yin F Q, Liu W F, Chai J, et al. CRISPR/Cas9 application for gene copy fate survey of polyploid vertebrates. Front Genet, 2018, 9: 260. Google Scholar

[110] Feuillet C, Leach J E, Rogers J, et al. Crop genome sequencing: Lessons and rationales. Trends Plant Sci, 2011, 16: 77-88 CrossRef PubMed Google Scholar

[111] Ng D W K, Miller M, Yu H H, et al. A role for CHH methylation in the parent-of-origin effect on altered circadian rhythms and biomass heterosis in Arabidopsis intraspecific hybrids. Plant Cell, 2014, 26: 2430-2440 CrossRef PubMed Google Scholar

[112] Miller M, Zhang C, Chen Z J. Ploidy and hybridity effects on growth vigor and gene expression in Arabidopsis thaliana hybrids and their parents. G3, 2012, 2: 505-513 CrossRef PubMed Google Scholar

[113] Wang Y, Lu Y, Zhang Y, et al. The draft genome of the grass carp (Ctenopharyngodon idellus) provides insights into its evolution and vegetarian adaptation. Nat Genet, 2015, 47: 625-631 CrossRef PubMed Google Scholar

[114] Saski C A, Feltus F A, Parida L, et al. BAC sequencing using pooled methods. Methods Mol Biol, 2015, 1227: 55–67. Google Scholar

[115] Shin S C, Ahn D H, Kim S J, et al. Advantages of single-molecule real-time sequencing in high-GC content genomes. PLoS ONE, 2013, 8: e68824 CrossRef PubMed ADS Google Scholar

[116] Gupta P K. Single-molecule DNA sequencing technologies for future genomics research. Trends Biotech, 2008, 26: 602-611 CrossRef PubMed Google Scholar

[117] McCarthy A. Third generation DNA sequencing: Pacific biosciences’ single molecule real time technology. Chem Biol, 2010, 17: 675-676 CrossRef PubMed Google Scholar

[118] Staňková H, Hastie A R, Chan S, et al. BioNano genome mapping of individual chromosomes supports physical mapping and sequence assembly in complex plant genomes. Plant Biotech J, 2016, 14: 1523-1531 CrossRef PubMed Google Scholar

[119] Bickhart D M, Rosen B D, Koren S, et al. Single-molecule sequencing and chromatin conformation capture enable de novo reference assembly of the domestic goat genome. Nat Genet, 2017, 49: 643-650 CrossRef PubMed Google Scholar

[120] Mascher M, Gundlach H, Himmelbach A, et al. A chromosome conformation capture ordered sequence of the barley genome. Nature, 2017, 544: 427-433 CrossRef PubMed ADS Google Scholar

[121] Chin F Y L, Leung H C M, Yiu S M. Sequence assembly using next generation sequencing data—challenges and solutions. Sci China Life Sci, 2014, 57: 1140-1148 CrossRef PubMed Google Scholar

[122] Chin C S, Alexander D H, Marks P, et al. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat Methods, 2013, 10: 563-569 CrossRef PubMed Google Scholar

[123] Gruenheit N, Deusch O, Esser C, et al. Cutoffs and k-mers: Implications from a transcriptome study in allopolyploid plants. BMC Genom, 2012, 13: 92 CrossRef PubMed Google Scholar

[124] Chai J, Su Y, Huang F, et al. The gap in research on polyploidization between plants and vertebrates: Model systems and strategic challenges. Sci Bull, 2015, 60: 1471-1478 CrossRef Google Scholar


Contact and support