SCIENTIA SINICA Vitae, Volume 45 , Issue 2 : 156-164(2015) https://doi.org/10.1360/N052014-00301

Long Non-Coding RNA Tug1 in Cortical Development of Cerebrum

More info
  • ReceivedSep 3, 2014
  • AcceptedSep 18, 2014
  • PublishedFeb 28, 2015






[1] Zhou Y. Cortical development and asymmetric cell divisions. Front Biol, 2012, 7: 297-306. Google Scholar

[2] Ramon Y, Cajal S. Histology of the Nervous System of Man and Vertebrates. New York: Oxford University Press, 1995. Google Scholar

[3] Belgard T G, Marques A C, Oliver P L, et al. A transcriptomic atlas of mouse neocortical layers. Neuron, 2011, 71: 605-616. Google Scholar

[4] Götz M, Huttner W B. The cell biology of neurogenesis. Nat Rev Mol Cell Biol, 2005, 6: 777-788. Google Scholar

[5] Wang X, Tsai J W, Lamonica B, et al. A new subtype of progenitor cell in the mouse embryonic neocortex. Nat Neurosci, 2011, 14: 555-561. Google Scholar

[6] Batista P J, Chang H Y. Long noncoding RNAs: cellular address codes in development and disease. Cell, 2013, 152: 1298-1307. Google Scholar

[7] Bernstein E, Allis C D. RNA meets chromatin. Genes Dev, 2005, 19: 1635-1655. Google Scholar

[8] Li L, Liu B, Wapinski O L, et al. Targeted disruption of Hotair leads to homeotic transformation and gene derepression. Cell Rep, 2013, 5: 3-12. Google Scholar

[9] Sun S, Del Rosario B C, Szanto A, et al. Jpx RNA activates Xist by evicting CTCF. Cell, 2013, 153: 1537-1551. Google Scholar

[10] Latos P A, Pauler F M, Koerner M V, et al. Airn transcriptional overlap, but not its lncRNA products, induces imprinted Igf2r silencing. Science, 2012, 338: 1469-1472. Google Scholar

[11] Carrieri C, Cimatti L, Biagioli M, et al. Long non-coding antisense RNA controls Uchl1 translation through an embedded SINEB2 repeat. Nature, 2012, 491: 454-457. Google Scholar

[12] Yoon J H, Abdelmohsen K, Srikantan S, et al. LincRNA-p21 suppresses target mRNA translation. Mol Cell, 2012, 47: 648-655. Google Scholar

[13] Kallen A N, Zhou X B, Xu J, et al. The imprinted H19 lncRNA antagonizes let-7 microRNAs. Mol Cell, 2013, 52: 101-112. Google Scholar

[14] Cesana M, Cacchiarelli D, Legnini I, et al. A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell, 2011, 147: 358-369. Google Scholar

[15] Gong C, Maquat L E. lncRNAs transactivate STAU1-mediated mRNA decay by duplexing with 3'UTRs via Alu elements. Nature, 2011, 470: 284-288. Google Scholar

[16] Kretz M, Siprashvili Z, Chu C, et al. Control of somatic tissue differentiation by the long non-coding RNA TINCR. Nature, 2013, 493: 231-235. Google Scholar

[17] Ramos A D, Diaz A, Nellore A, et al. Integration of genome-wide approaches identifies lncRNAs of adult neural stem cells and their progeny in vivo. Cell stem cell, 2013, 12: 616-628. Google Scholar

[18] Klattenhoff C A, Scheuermann J C, Surface L E, et al. Braveheart, a long noncoding RNA required for cardiovascular lineage commitment. Cell, 2013, 152: 570-583. Google Scholar

[19] Ng S Y, Bogu G K, Soh B S, et al. The long noncoding RNA RMST interacts with SOX2 to regulate neurogenesis. Mol Cell, 2013, 51: 349-359. Google Scholar

[20] Young T L, Cepko C L. A role for ligand-gated ion channels in rod photoreceptor development. Neuron, 2004, 41: 867-879. Google Scholar

[21] Young T L, Matsuda T, Cepko C L. The noncoding RNA taurine upregulated gene 1 is required for differentiation of the murine retina. Curr Biol, 2005, 15: 501-512. Google Scholar

[22] Yang L, Lin C, Liu W, et al. ncRNA- and Pc2 methylation-dependent gene relocation between nuclear structures mediates gene activation programs. Cell, 2011, 147: 773-788. Google Scholar

[23] Zhang Q, Geng P L, Yin P, et al. Down-regulation of long non-coding RNA TUG1 inhibits osteosarcoma cell proliferation and promotes apoptosis. Asian Pac J Cancer Prev, 2013, 14: 2311-2315. Google Scholar

[24] Han Y, Liu Y, Gui Y, et al. Long intergenic non-coding RNA TUG1 is overexpressed in urothelial carcinoma of the bladder. J Surg Oncol, 2013, 107: 555-559. Google Scholar

[25] Ayoub A E, Oh S, Xie Y, et al. Transcriptional programs in transient embryonic zones of the cerebral cortex defined by high-resolution mRNA sequencing. Proc Natl Acad Sci USA, 2011, 108: 14950-14955. Google Scholar

[26] Dillman A A, Hauser D N, Gibbs J R, et al. mRNA expression, splicing and editing in the embryonic and adult mouse cerebral cortex. Nat Neurosci, 2013, 16: 499-506. Google Scholar

[27] Van Heesch S, Van Iterson M, Jacobi J, et al. Extensive localization of long noncoding RNAs to the cytosol and mono-and polyribosomal complexes. Genome Biol, 2014, 15: R6. Google Scholar

[28] Gutschner T, Baas M, Diederichs S. Noncoding RNA gene silencing through genomic integration of RNA destabilizing elements using zinc finger nucleases. Genome Res, 2011, 21: 1944-1954. Google Scholar

[29] Sauvageau M, Goff L A, Lodato S, et al. Multiple knockout mouse models reveal lincRNAs are required for life and brain development. Elife, 2013, 2: e01749. Google Scholar


Contact and support