logo

SCIENTIA SINICA Vitae, Volume 45 , Issue 2 : 175-182(2015) https://doi.org/10.1360/N052014-00299

Molecular Evolution of Pheromonal Olfaction in Marine Mammals

More info
  • ReceivedSep 12, 2014
  • AcceptedNov 20, 2014
  • PublishedFeb 28, 2015

Abstract


Funded by

国家自然科学基金(31300313)

武汉大学科研启动专项经费(204273661)


References

[1] Wysocki C J, Meredith M. The Vomeronasal System. New York: John Wiley. 1987, Google Scholar

[2] Buck L B. The molecular architecture of odor and pheromone sensing in mammals. Cell, 2000, 100: 611-618 CrossRef Google Scholar

[3] Grus W E, Zhang J. Distinct evolutionary patterns between chemoreceptors of 2 vertebrate olfactory systems and the differential tuning hypothesis. Mol Biol Evol, 2008, 25: 1593-1601 CrossRef Google Scholar

[4] Zhang J, Webb D M. Evolutionary deterioration of the vomeronasal pheromone transduction pathway in catarrhine primates. Proc Natl Acad Sci USA, 2003, 100: 8337-8341 CrossRef Google Scholar

[5] Zhao H, Xu D, Zhang S, et al. Widespread losses of vomeronasal signal transduction in bats. Mol Biol Evol, 2011, 28: 7-12 CrossRef Google Scholar

[6] Perrin W F, Würsig B, Thewissen J G M. Encyclopedia of Marine Mammals. New York: Academic Press. 2009, Google Scholar

[7] Lowell W R, Flanigan W F. Marine mammal chemoreception. Mammal Rev, 1980, 10: 53-59 CrossRef Google Scholar

[8] Yu L, Jin W, Wang J X, et al. Characterization of TRPC2, an essential genetic component of VNS chemoreception, provides insights into the evolution of pheromonal olfaction in secondary-adapted marine mammals. Mol Biol Evol, 2010, 27: 1467-1477 CrossRef Google Scholar

[9] Grus W E, Zhang J. Origin and evolution of the vertebrate vomeronasal system viewed through system-specific genes. Bioessays, 2006, 28: 709-718 CrossRef Google Scholar

[10] Thompson J D, Gibson T J, Plewniak F, et al. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res, 1997, 25: 4876-4882 CrossRef Google Scholar

[11] Tamura K, Peterson D, Peterson N, et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol, 2011, 28: 2731-2739 CrossRef Google Scholar

[12] Mackay-Sim A, Duvall D, Graves B M. The West Indian manatee (Trichechus manatus) lacks a vomeronasal organ. Brain Behav Evol, 1985, 27: 186-194 CrossRef Google Scholar

[13] Switzer R C, Johnson J J, Kirsch J A W. Phylogeny through brain traits: relation of lateral olfactory tract fibers to the accessory olfactory formation as a palimpsest of mammalian descent. Brain Behav Evol, 1980, 17: 339-363 CrossRef Google Scholar

[14] Meisami E, Bhatnagar K P. Structure and diversity in mammalian accessory olfactory bulb. Microsc Res Tech, 1998, 43: 476-499 CrossRef Google Scholar

[15] Zhao H, Rossiter S J, Teeling E C, et al. The evolution of color vision in nocturnal mammals. Proc Natl Acad Sci USA, 2009, 106: 8980-8985 CrossRef Google Scholar

[16] Zhao H, Zhou Y, Pinto C M, et al. Evolution of the sweet taste receptor gene Tas1r2 in bats. Mol Biol Evol, 2010, 27: 2642-2650 CrossRef Google Scholar

[17] Neuweiler G. The Biology of Bats. Oxford (UK): University Press. 2000, Google Scholar

[18] Eisthen H L, Wyatt T D. The vomeronasal system and pheromones. Curr Biol, 2006, 16: R73-R74 CrossRef Google Scholar

[19] Kishida T, Kubota S, Shirayama Y, et al. The olfactory receptor gene repertoires in secondary-adapted marine vertebrates: evidence for reduction of the functional proportions in cetaceans. Biol Lett, 2007, 3: 428-430 CrossRef Google Scholar

[20] Jiang P, Josue J, Li X, et al. Major taste loss in carnivorous mammals. Proc Natl Acad Sci USA, 2012, 109: 4956-4961 CrossRef Google Scholar

[21] Sato J J, Wolsan M. Loss or major reduction of umami taste sensation in pinnipeds. Naturwissenschaften, 2012, 99: 655-659 CrossRef Google Scholar

[22] Feng P, Zheng J, Rossiter S J, et al. Massive losses of taste receptor genes in toothed and baleen whales. Genome Biol Evol, 2014, 6: 1254-1265 CrossRef Google Scholar

[23] Hayden S, Bekaert M, Crider T A, et al. Ecological adaptation determines functional mammalian olfactory subgenomes. Genome Res, 2010, 20: 1-9 CrossRef Google Scholar

[24] Cline D R, Siniff D B, Erickson A W. Underwater copulation of the Weddell seal. J Mammal, 1971, 52: 216-218 CrossRef Google Scholar

[25] Cassini M H. A model on female breeding dispersion and the reproductive systems of pinnipeds. Behav Processes, 1999, 51: 93-99 Google Scholar

[26] Shi P, Zhang J. Comparative genomic analysis identifies an evolutionary shift of vomeronasal receptor gene repertoires in the vertebrate transition from water to land. Genome Res, 2007, 17: 166-174 CrossRef Google Scholar

[27] Emes R D, Beatson S A, Ponting C P, et al. Evolution and comparative genomics of odorant- and pheromone-associated genes in rodents. Genome Res, 2004, 14: 591-602 CrossRef Google Scholar

  • 图 1

    海洋哺乳动物Trpc2氨基酸序列的对位排列

  • 图 2

    5类海洋哺乳动物的物种树

  • 表 1   本研究所用的引物序列

    物种名称

    引物名称

    引物序列(5′→3′)

    退火温度(℃)

    扩增产物

    北极熊

    Bear_ex2F

    TGGAAACAACTTTGTTAGTAT

    52

    外显子2(~1100 bp)

    Bear_ex2R

    ATTCTGTAAGTCCCCATCAAA

    Bear_ex3F

    ACCTCACAGCAAGGAGGAGA

    TD

    外显子3(~300 bp)

    Bear_ex3R

    AGAAGGGAGGTGAGGAGACC

    Bear_ex4F

    AAAAAGAATGTGGGATCCGGA

    TD

    外显子4(~800 bp)

    Bear_ex4R

    TGTTGAAACCGTGCTATTTCC

    Bear_ex5F

    GAACAAGTAGAAATAGCGAGT

    52

    外显子5(~800 bp)

    Bear_ex5R

    CAGAAGGGTTTGGTTATATGT

    Bear_ex6&ex7F

    CCTTCAGGCTTCCTGTGGTTT

    TD

    外显子6~外显子7(~900 bp)

    Bear_ ex6&ex7R

    TCATGGGCCGGCAGAATGTAG

    Bear_ex8F

    CACCAAATTGAATACTTGCCA

    TD

    外显子8(~400 bp)

    Bear_ex8R

    ATCAAGCGACGAATTATGAGC

    Bear_ex9F

    AGTTTCTTAACTGGTCTTCAT

    52

    外显子9(~900 bp)

    Bear_ex9R

    TTCATCCTCTGACATCCAATT

    Bear_ex11F

    CACACTGCGGAAGAAGAGGTA

    48

    外显子11(~400 bp)

    Bear_ex11R

    GATAGTCTGGCTTCTCGGTTC

    Bear_ex12F

    ACCTGCCCACCCCAGCTCTTA

    TD

    外显子12(~500 bp)

    Bear_ex12R

    TGAGGCTGGAACAAAGGAGAT

    Bear_ex13F

    CAAAGTGAAGTGGCTGGTGTG

    TD

    外显子13(~300 bp)

    Bear_ex13R

    CACACTCTGGAGGCATCTGAC

    斑海豹

    Seal_ex2F2

    CTGAGGTTCCCACCTCCAC

    TD

    外显子2(~700 bp)

    Seal_ex2R2

    CCTTAAACTCAGGCTCCTTGC

    Seal_ex6F2

    TTCCTGTGGTTTGAGTGCAA

    TD

    外显子6(~200 bp)

    Seal_ex6R

    CAGCCGTGGTGAAATAGTGG

    南美海狮

    Sealion_ex2F

    CACCTGGACAGAGATCACGA

    TD

    外显子2(~700 bp)

    Sealion_ex2R

    CAGCATGGCGTCCTCACT

    南美海狮和斑海豹

    Sealion_ex3F

    CGAGTACATTGCCCTGGAG

    TD

    外显子3(~200 bp)

    Sealion_ex3R

    CCGCTTCTGGTTGTAGTTGA

    Sealion_ex4F

    TTTGTAGCACACCCCATCTG

    47

    外显子4(~200 bp)

    Sealion_ex4R

    CAGTAGCCAAGGCAGAGGAA

    Sealion_ex5F

    AAGATCCCGGTGCTGAAGTT

    TD

    外显子5(~200 bp)

    Sealion_ex5R

    TGTGACCCAAACCATGTGTAG

    Sealion_ex7F2

    GAGTGGCACACCGAGGAC

    TD

    外显子7(~700 bp)

    Sealion_ex7R2

    TCATGTCGTCAATCATCTTGC

    Sealion_ex8F

    AGGTTCATGTTCATCCTCAT

    TD

    外显子8(~900 bp)

    Sealion_ex8R

    ACTTGCCCAGCCGCTCCGTC

    Sealion_ex9F

    CATCCCAGTTTCTGTTCTGGA

    TD

    外显子9(~200 bp)

    Sealion_ex9R

    CAATCTTCTGGAAGGAGTTGGT

    Sealion_ex10F

    GGATGTGGAGTGGAAGTTCG

    62

    外显子10(~100b p)

    Sealion_ex10R

    AAGGTAGAAGAGGGCCTTGG

    TD指降落PCR(touch-down PCR), 退火温度为45℃~65℃

  • 表 2   海洋哺乳动物的移码突变和无义突变

    分类阶元

    俗名

    物种名

    外显子

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    11

    12

    13

    鲸目

    须鲸亚目

    长须鲸

    B. physalus

    ●●ab

    g

    ●▲

    齿鲸亚目

    瓶鼻海豚

    T. truncatus

    ab

    g

    食肉目

    鳍脚类

    港海豹

    P. vitulina

    d

    e

    斑海豹

    P. largha

    d

    e

    ●▲

    加州海狮

    Z. californianus

    南美海狮

    O. byronia

    鼬科

    水獭

    L. lutra

    熊科

    北极熊

    U. maritimus

    海牛目

    西印度海牛

    T. manatus

    ●: 移码突变; ▲: 无义突变;a, b, g, d, e: 物种间的共同突变; 粗体: 本研究新获取的序列; –: 没有获得的外显子; 没有标记的外显子是完整的(无移码突变或无义突变)

qqqq

Contact and support