logo

SCIENTIA SINICA Chimica, Volume 47 , Issue 1 : 70-81(2017) https://doi.org/10.1360/N032016-00174

Research progress about the applications of self-propellant Janus particles in water environment

More info
  • ReceivedAug 31, 2016
  • AcceptedOct 12, 2016
  • PublishedDec 21, 2016

Abstract


Funding

国家自然科学基金(11272322,11572335,11602187资助项目)


References

[1] WHO/UNICEF. Progress on Sanitation and Drinking Water–2015 update and MDG assessment. JMP 2015 Report, 2015. Google Scholar

[2] Jones KC, de Voogt P. Environ Pollut, 1999, 100209-221 CrossRef Google Scholar

[3] Taylor KW, Novak RF, Anderson HA, Birnbaum LS, Blystone C, Devito M, Jacobs D, Köhrle J, Lee DH, Rylander L, Rignell-Hydbom A, Tornero-Velez R, Turyk ME, Boyles AL, Thayer KA, Lind L. Environ Health Perspect, 2013, 121774-783 CrossRef PubMed Google Scholar

[4] Boyd GR, Reemtsma H, Grimm DA, Mitra S. Sci Total Environ, 2003, 311135-149 CrossRef Google Scholar

[5] Russell AJ, Berberich JA, Drevon GF, Koepsel RR. Annu Rev Biomed Eng, 2003, 51-27 CrossRef Google Scholar

[6] Karn B, Kuiken T, Otto M. Environ Health Perspect, 2009, 1171823-1831 CrossRef PubMed Google Scholar

[7] Qu X, Brame J, Li Q, Alvarez PJJ. Acc Chem Res, 2013, 46834-843 CrossRef PubMed Google Scholar

[8] Singh VV, Wang J. Nanoscale, 2015, 719377-19389 CrossRef PubMed ADS Google Scholar

[9] Gao W, Wang J. ACS Nano, 2014, 83170-3180 CrossRef PubMed Google Scholar

[10] Soler L, Sánchez S. Nanoscale, 2014, 67175-7182 CrossRef PubMed ADS Google Scholar

[11] de Gennes PG. Rev Mod Phys, 1992, 64645-648 CrossRef ADS Google Scholar

[12] Perro A, Reculusa S, Ravaine S, Bourgeat-Lami E, Duguet E. J Mater Chem, 2005, 153745-3760 CrossRef Google Scholar

[13] 陈云华, 王朝阳, 李煜, 童真. 化学进展, 2009, 21: 615–621. Google Scholar

[14] Jiang S, Granick S, Schneider HJ. Janus Particle Synthesis, Self-assembly and Applications. Cambridge: RSC press, 2012. Google Scholar

[15] Walther A, Müller AHE. Chem Rev, 2013, 1135194-5261 CrossRef PubMed Google Scholar

[16] Wu M, Zhang H, Zheng X, Cui H. AIP Adv, 2014, 4031326 CrossRef ADS Google Scholar

[17] Jiang HR, Yoshinaga N, Sano M. Phys Rev Lett, 2010, 105268302 CrossRef PubMed ADS Google Scholar

[18] Paxton WF, Kistler KC, Olmeda CC, Sen A, St. Angelo SK, Cao Y, Mallouk TE, Lammert PE, Crespi VH. J Am Chem Soc, 2004, 12613424-13431 CrossRef PubMed Google Scholar

[19] Mirkovic T, Zacharia NS, Scholes GD, Ozin GA. Small, 2010, 6159-167 CrossRef PubMed Google Scholar

[20] Wang W, Castro LA, Hoyos M, Mallouk TE. ACS Nano, 2012, 66122-6132 CrossRef PubMed Google Scholar

[21] Gibbs JG, Zhao YP. Appl Phys Lett, 2009, 94163104 CrossRef ADS Google Scholar

[22] Wang W, Duan W, Ahmed S, Mallouk TE, Sen A. Nano Today, 2013, 8531-554 CrossRef Google Scholar

[23] Wang W, Chiang TY, Velegol D, Mallouk TE. J Am Chem Soc, 2013, 13510557-10565 CrossRef PubMed Google Scholar

[24] Hanrahan G, Patil DG, Wang J. J Environ Monit, 2004, 6657-664 CrossRef PubMed Google Scholar

[25] Sen A, Ibele M, Hong Y, Velegol D. Faraday Discuss, 2009, 14315-27 CrossRef Google Scholar

[26] Solovev AA, Sanchez S, Schmidt OG. Nanoscale, 2013, 51284-1293 CrossRef PubMed ADS Google Scholar

[27] Kagan D, Calvo-Marzal P, Balasubramanian S, Sattayasamitsathit S, Manesh KM, Flechsig GU, Wang J. J Am Chem Soc, 2009, 13112082-12083 CrossRef PubMed Google Scholar

[28] Orozco J, García-Gradilla V, D’Agostino M, Gao W, Cortés A, Wang J. ACS Nano, 2013, 7818-824 CrossRef PubMed Google Scholar

[29] Vieira LR, Gravato C, Soares AMVM, Morgado F, Guilhermino L. Chemosphere, 2009, 761416-1427 CrossRef PubMed Google Scholar

[30] Buikema AL Jr, Niederlehner BR, Cairns J Jr. Water Res, 1982, 16239-262 CrossRef Google Scholar

[31] Sprague JB. Water Res, 1969, 3793-821 CrossRef Google Scholar

[32] Gao W, Pei A, Dong R, Wang J. J Am Chem Soc, 2014, 1362276-2279 CrossRef PubMed Google Scholar

[33] Zheng X, Ten Hagen B, Kaiser A, Wu M, Cui H, Silber-Li Z, Löwen H. Phys Rev E, 2013, 88032304 CrossRef PubMed ADS Google Scholar

[34] 崔海航, 谭晓君, 张鸿雁. 纳米技术与精密工程, 2014, 12: 340–345. Google Scholar

[35] 李斐, 张鸿雁, 武美玲, 郑旭, 崔海航. 应用数学和力学, 2014, 35: 663–673. Google Scholar

[36] Rojas D, Jurado-Sánchez B, Escarpa A. Anal Chem, 2016, 884153-4160 CrossRef PubMed Google Scholar

[37] Kröger S, Turner APF, Mosbach K, Haupt K. Anal Chem, 1999, 713698-3702 CrossRef Google Scholar

[38] Singh VV, Kaufmann K, Orozco J, Li J, Galarnyk M, Arya G, Wang J. Chem Commun, 2015, 5111190-11193 CrossRef PubMed Google Scholar

[39] Campuzano S, Orozco J, Kagan D, Guix M, Gao W, Sattayasamitsathit S, Claussen JC, Merkoçi A, Wang J. Nano Lett, 2012, 12396-401 CrossRef PubMed ADS Google Scholar

[40] Kagan D, Campuzano S, Balasubramanian S, Kuralay F, Flechsig GU, Wang J. Nano Lett, 2011, 112083-2087 CrossRef PubMed Google Scholar

[41] Wu J, Balasubramanian S, Kagan D, Manesh KM, Campuzano S, Wang J. Nat Commun, 2010, 1150 CrossRef PubMed ADS Google Scholar

[42] Ma X, Jannasch A, Albrecht UR, Hahn K, Miguel-López A, Schäffer E, Sánchez S. Nano Lett, 2015, 157043-7050 CrossRef PubMed ADS Google Scholar

[43] Farré M, Pérez S, Gonçalves C, Alpendurada MF, Barceló D. TrAC Trends Anal Chem, 2010, 291347-1362 CrossRef Google Scholar

[44] Campuzano S, Kagan D, Orozco J, Wang J. Analyst, 2011, 1364621-4630 CrossRef PubMed Google Scholar

[45] Lin Z, Wu Z, Lin X, He Q. Chem Eur J, 2016, 221587-1591 CrossRef PubMed Google Scholar

[46] Zhang W. J Nanopart Res, 2003, 5323-332 CrossRef Google Scholar

[47] Ariga K, Ishihara S, Abe H, Li M, Hill JP. J Mater Chem, 2012, 222369-2377 CrossRef Google Scholar

[48] Orozco J, Jurado-Sánchez B, Wagner G, Gao W, Vazquez-Duhalt R, Sattayasamitsathit S, Galarnyk M, Cortés A, Saintillan D, Wang J. Langmuir, 2014, 305082-5087 CrossRef PubMed Google Scholar

[49] Guix M, Orozco J, García M, Gao W, Sattayasamitsathit S, Merkoçi A, Escarpa A, Wang J. ACS Nano, 2012, 64445-4451 CrossRef PubMed Google Scholar

[50] Jurado-Sánchez B, Sattayasamitsathit S, Gao W, Santos L, Fedorak Y, Singh VV, Orozco J, Galarnyk M, Wang J. Small, 2015, 11499-506 CrossRef PubMed Google Scholar

[51] Orozco J, Mercante LA, Pol R, Merkoçi A. J Mater Chem A, 2016, 43371-3378 CrossRef Google Scholar

[52] Soler L, Magdanz V, Fomin VM, Sanchez S, Schmidt OG. ACS Nano, 2013, 79611-9620 CrossRef PubMed Google Scholar

[53] Orozco J, Cheng G, Vilela D, Sattayasamitsathit S, Vazquez-Duhalt R, Valdés-Ramírez G, Pak OS, Escarpa A, Kan C, Wang J. Angew Chem Int Ed, 2013, 5213276-13279 CrossRef PubMed Google Scholar

[54] Carey JH, Lawrence J, Tosine HM. Bull Environ Contam Toxicol, 1976, 16697-701 CrossRef Google Scholar

[55] Hoffmann MR, Martin ST, Choi W, Bahnemann DW. Chem Rev, 1995, 9569-96 CrossRef Google Scholar

[56] Linsebigler AL, Lu G, Yates JT. Chem Rev, 1995, 95735-758 CrossRef Google Scholar

[57] Trubitsyn DA, Vorontsov AV. J Phys Chem B, 2005, 10921884-21892 CrossRef PubMed Google Scholar

[58] Li J, Singh VV, Sattayasamitsathit S, Orozco J, Kaufmann K, Dong R, Gao W, Jurado-Sanchez B, Fedorak Y, Wang J. ACS Nano, 2014, 811118-11125 CrossRef PubMed Google Scholar

[59] Ge Y, Liu M, Liu L, Sun Y, Zhang H, Dong B. Nano-Micro Lett, 2016, 8157-164 CrossRef Google Scholar

[60] 蒋建东, 张瑞福, 何健, 张晓舟, 崔中利, 李顺鹏. 生态学报, 2005, 25: 1764–1771. Google Scholar

[61] 武美玲, 郑旭, 崔海航, 李战华. 水动力学研究与进展A辑, 2014, 3: 3. Google Scholar

[62] 边丽霞, 方彦彦, 王晓琳. 化工学报, 2014, 7: 2813–2820. Google Scholar

[63] Jun IK, Hess H. Adv Mater, 2010, 224823-4825 CrossRef PubMed Google Scholar

[64] Zhou C, Zhang H, Li Z, Wang W. Lab Chip, 2016, 161797-1811 CrossRef PubMed Google Scholar

[65] 李刚, 李雪梅, 柳越, 王铎, 何涛, 高从蜡. 化学进展, 2010, 22: 812–821. Google Scholar

[66] Parmar J, Vilela D, Pellicer E, Esqué-de los Ojos D, Sort J, Sánchez S. Adv Funct Mater, 2016, 264152-4161 CrossRef Google Scholar

[67] Chen J, Zhang H, Zheng X, Cui H. AIP Adv, 2014, 4031325 CrossRef ADS Google Scholar

[68] 宫春亮. Janus颗粒自驱动实验及运动特性分析. 硕士学位论文. 西安: 西安建筑科技大学, 2013. 46–52. Google Scholar

  • 图 1

    不同形式的自驱动微纳马达[14,15] (网络版彩图)

  • 图 2

    微纳马达的自驱动原理示意图. 左下插图为浓度梯度作用下的自扩散泳驱动[16], 左上插图为温度梯度下的自热泳驱动[17], 右上插图为电场梯度作用下的自电泳驱动[18,19], 右下插图为气泡驱动[21] (网络版彩图)

  • 图 3

    基于Au-Pt微纳马达的运动速度检测痕量Ag+ [27]. 图中显示了在11种金属离子溶液中微纳马达的运动速度, 插图为微纳马达在含Ag+溶液中的运动轨迹图(网络版彩图)

  • 图 4

    “人工鱼”Janus管式微马达检测有毒物质示意图[28]. 在有毒物质作用下管式微马达自驱运动减弱(网络版彩图)

  • 图 5

    利用Ir-SiO2 Janus颗粒追踪并分解N2H4示意图[32] (网络版彩图)

  • 图 6

    (a) 利用Mg-Au Janus微马达同步检测和降解DPP示意图. Mg反应产生的OH将DPP降解为可电离的苯酚, 再利用DPV法进行电流变化的检测. (b) 降解DPP的化学反应[36] (网络版彩图)

  • 图 7

    (a) Janus马达对神经毒剂的检测机理示意图; (b) Janus马达表面FLA镀层与DCP反应机理图[38] (网络版彩图)

  • 图 8

    (a) 微纳马达追踪并隔离细菌[39]; (b) 微纳马达捕获、隔离核酸作用机理示意图[40]; (c) 基于微纳马达自驱运动的DNA/rRNA[41] (网络版彩图)

  • 图 9

    自驱动Janus颗粒处理油滴. (A) 超疏水SAM改性后的Au/Ni/PEDOT/Pt Janus微管. 利用电子束蒸发技术将Au和Ni层分别镀在PEDOT/Pt Janus颗粒上, 将其浸泡在十二硫醇溶液中在Au表面形成超疏水层; (B) 经硫醇改性后的Janus颗粒用于油滴收集并自驱运输. 图a、b、c分别为11、50和73 s后Janus颗粒的运动图像[49] (网络版彩图)

  • 图 10

    Fe-Pt管式微马达利用Fenton反应处理染料废水. Fe-Pt管式微马达内侧为Pt层用于产生自驱动, 外层为Fe层, 在原位生成Fe2+. Fe2+和H2O2反应产生HO·来降解有机物[52] (网络版彩图)

  • 图 11

    PEDOT-Pt型管式微马达降解OP示意图[53]. (A, B) 将微马达加入被污染水溶液中, 同时加入H2O2 (作为氧化剂/燃料)和NaHCO3 (作为活化剂), 基于微马达的运动导致的增强性流体运动可实现对污染水溶液的加速氧化降解; (C) 基于微马达的作用, 可以在温和条件下对化学威胁物质进行快速无毒化处理, 其中涉及在原位生成OOH亲核物质; (D) 利用分光光度法, 测量不同反应时间下, p-NP反应产物在400 nm波长处的吸光度来估计净化效率

  • 图 12

    自驱动Janus颗粒结合光催化的示意图[58] (网络版彩图)

  • 表 1   微纳马达在水环境领域的应用

    领域

    具体应用

    微纳马达类型

    作用机理

    水质监测

    重金属检测

    Ag+检测

    Au-Pt棒状纳米马达

    Ag+在微纳马达表面沉积造成的自电泳加速运动

    Kagan等[27]

    重金属、农药等有毒物质

    PEDOT-Au (生物酶)管式微马达

    毒性物质导致的酶活性降低从而降低微马达的驱动速度

    Orozco等[28]

    有机污染物监测

    痕量N2H4的检测

    Ir-SiO2 Janus颗粒

    浓度梯度下的自扩散泳驱动, 污染物浓度与Janus颗粒速度有良好的对应关系

    高伟等[32]

    酞酸二苯酯等的检测

    Mg-Au Janus颗粒

    利用Janus颗粒分解有机污染物产生电流变化关系

    Rojas等[36]

    神经毒剂的检测

    FLA-Pt Janus颗粒

    利用Janus颗粒表面荧光特性的变化进行有毒污染物的监测

    Singh等[38]

    微生物(组织)、核酸检测

    大肠杆菌

    伴刀豆凝集素A接枝管式微马达

    凝集素对细菌表面的糖蛋白成分的识别

    Campuzano等[39]

    核酸检测

    DNA修饰的管式微马达

    DNA的杂交原理

    Kagan等[40]

    DNA修饰的棒状微马达

    DNA的杂交原理及自驱动速度与浓度的对应关系

    吴洁等[41]

    其他

    各种酶反应底物的检测

    酶修饰的Janus颗粒

    不同种类的酶对底物反应的单一性以及Janus 颗粒自驱动速度与浓度的关系

    Ma等[42]

    水体修复

    吸附法

    石油捕捉和分离

    SAM改性Ni-Cu-PEDOT-Pt管式微马达

    疏水基团的吸附作用

    Guix等[49]

    有机污染物、重金属

    活性炭-Pt Janus颗粒

    自驱动导致的增强性吸附

    Jurado-Sánchez等[50]

    去除有机污染物

    SiO2@rGO-Pt Janus颗粒

    自驱动导致的增强性吸附

    Orozco等[51]

    去除带电有机污染物

    (PAH9/PSS9)10Pt微马达

    自驱动导致的增强性静电吸附

    贺强等[45]

    氧化法

    降解染料废水

    Pt-Fe管式微马达

    自驱动导致的增强性Fenton反应

    Sanchez等[52]

    降解神经毒剂

    聚合物-Pt管式微马达

    自驱动导致的增强性氧化反应

    Orozco等[53]

    光催化

    TiO2-Au-Mg Janus颗粒

    自驱动导致的增强性氧化反应

    Li等[58]

    其他

    杀菌

    Ag-Mg Janus颗粒

    自驱动导致的增强性杀菌

    Ge等[59]

qqqq

Contact and support