logo

SCIENTIA SINICA Chimica, Volume 47 , Issue 1 : 92-99(2017) https://doi.org/10.1360/N032016-00057

Recent progress of actinide nitride fuel properties through first-principles simulation

More info
  • ReceivedMar 15, 2016
  • AcceptedJul 25, 2016

Abstract


Funding

国家自然青年科学基金(11505006,21577144,91326202)

中央高校基本科研业务费专项资金(FRF-TP-15-074A1)

中国博士后科学基金(2015T80136)

中国科学院战略研究项目(XDA030104)


References

[1] Glenzer SH, MacGowan BJ, Michel P, Meezan NB, Suter LJ, Dixit SN, Kline JL, Kyrala GA, Bradley DK, Callahan DA, Dewald EL, Divol L, Dzenitis E, Edwards MJ, Hamza AV, Haynam CA, Hinkel DE, Kalantar DH, Kilkenny JD, Landen OL, Lindl JD, LePape S, Moody JD, Nikroo A, Parham T, Schneider MB, Town RPJ, Wegner P, Widmann K, Whitman P, Young BKF, Van Wonterghem B, Atherton LJ, Moses EI. Science, 2010, 3271228-1231 CrossRef PubMed ADS Google Scholar

[2] http://www.world-nuclear.org/information-library/facts-and-figures/world-nuclear-power-reactors-archive/reactor-archive-december-2015.aspx, 2015-12-01. Google Scholar

[3] Mizuno T, Crawford DC, Fromont M, Lee JW, Abram T, Babelot JF. Status of the advanced fuel project for sodium-cooled fast reactor as a generation iv nuclear energy system. In: Proceedings of the International Conference Nuclear Energy System for Future Generation and Global Sustainability (GLOBAL 2005).Tsukuba, Japan, 2005. Google Scholar

[4] http://www.neimagazine.com/news/newshyperion-launches-u2n3-fuelled-pb-bi-cooled-fast-reactor, 2009-11-20. Google Scholar

[5] Thomson RK, Cantat T, Scott BL, Morris DE, Batista ER, Kiplinger JL. Nat Chem, 2010, 2723-729 CrossRef PubMed ADS Google Scholar

[6] King DM, Tuna F, McInnes EJL, McMaster J, Lewis W, Blake AJ, Liddle ST. Science, 2012, 337717-720 CrossRef PubMed ADS Google Scholar

[7] Curry NA. Proc Phys Soc, 1965, 861193-1198 CrossRef ADS Google Scholar

[8] Gryaznov D, Heifets E, Kotomin E. Phys Chem Chem Phys, 2012, 144482-4490 CrossRef PubMed Google Scholar

[9] Wen XD, Martin RL, Scuseria GE, Rudin SP, Batista ER. J Phys Chem C, 2013, 11713122-13128 CrossRef Google Scholar

[10] Chantis AN, Albers RC, Jones MD, van Schilfgaarde M, Kotani T. Phys Rev B, 2008, 7881101 CrossRef ADS arXiv Google Scholar

[11] Gryaznov D, Heifets E, Kotomin E. Phys Chem Chem Phys, 2009, 117241-7247 CrossRef PubMed ADS arXiv Google Scholar

[12] Chantis AN, Albers RC, Jones MD, van Schilfgaarde M, Kotani T. Phys Rev B, 2008, 78081101 CrossRef ADS arXiv Google Scholar

[13] Petit L, Svane A, Szotek Z, Temmerman WM, Stocks GM. Phys Rev B, 2009, 58: 1132–1136. Google Scholar

[14] Dorado B, Amadon B, Freyss M, Bertolus M. Phys Rev B, 2009, 79235125 CrossRef ADS Google Scholar

[15] Meredig B, Thompson A, Hansen HA, Wolverton C, van de Walle A. Phys Rev B, 2010, 82195128 CrossRef ADS Google Scholar

[16] Geng HY, Chen Y, Kaneta Y, Kinoshita M, Wu Q. Phys Rev B, 2010, 8294106 CrossRef ADS arXiv Google Scholar

[17] Marzari N. Ab-initio molecular dynamics for metallic systems. Doctor Dissertation. San Diego: University of Cambridge, 1996. Google Scholar

[18] Zhang YJ, Lan JH, Wang CZ, Wu QY, Bo T, Chai ZF, Shi WQ. J Phys Chem C, 2015, 1195783-5789 CrossRef Google Scholar

[19] Obodo KO, Chetty N. J Nucl Mater, 2013, 442235-244 CrossRef ADS Google Scholar

[20] Atta-Fynn R, Ray AK. Phys Rev B, 2007, 76115101 CrossRef ADS arXiv Google Scholar

[21] Zhang YJ, Lan JH, Bo T, Wang CZ, Chai ZF, Shi WQ. J Phys Chem C, 2014, 11814579-14585 CrossRef Google Scholar

[22] Bondarenko GG, Bulatov GS, Gedgovd KN, Lyubimov DY, Yakushkin MM. Russ Metall, 2011, 20111074-1078 CrossRef ADS Google Scholar

[23] Sedmidubský D, Konings RJM, Novák P. J Nucl Mater, 2005, 34440-44 CrossRef ADS Google Scholar

[24] Suzuki S, Li MF, Ariizumi T. J Phys Soc Jpn, 2008, 77074703-74708 CrossRef ADS Google Scholar

[25] Lu Y, Wang BT, Li RW, Shi H, Zhang P. J Nucl Mater, 2010, 406218-222 CrossRef ADS arXiv Google Scholar

[26] Marples JAC, Sampson CF, Wedgwood FA, Kuznietz M. J Phys C-Solid State Phys, 1975, 8708-716 CrossRef ADS Google Scholar

[27] Panwar YS, Aynyas M, Arya BS, Sanyal SP. AIP Conf Proc, 2013, 1536: 929. Google Scholar

[28] Shibata H, Tsuru T, Hirata M, Kaji Y. J Nucl Mater, 2010, 401113-117 CrossRef ADS Google Scholar

[29] Kotomin EA, Grimes RW, Mastrikov Y, Ashley NJ. J Phys-Condens Matter, 2007, 19106208 CrossRef ADS Google Scholar

[30] Kotomin EA, Mastrikov YA, Rashkeev SN, Van Uffelen P. J Nucl Mater, 2009, 393292-299 CrossRef ADS Google Scholar

[31] Kotomin EA, Mastrikov YA. J Nucl Mater, 2008, 377492-495 CrossRef ADS Google Scholar

[32] Lan JH, Zhao ZC, Wu Q, Zhao YL, Chai ZF, Shi WQ. J Appl Phys, 2013, 114223516-223516 CrossRef ADS Google Scholar

[33] Kuksin AY, Starikov SV, Smirnova DE, Tseplyaev VI. J Alloys Compd, 2016, 658385-394 CrossRef Google Scholar

[34] Turos A, Fritz S, Matzke H. Phys Rev B, 1990, 413968-3977 CrossRef ADS Google Scholar

[35] Kotomin EA, Gryaznov D, Grimes RW, Parfitt D, Zhukovskii YF, Mastrikov YA, Van Uffelen P, Rondinella VV, Konings RJM. Nucl Instruments Methods Phys Res Sect B-Beam Interactions Mater Atoms, 2008, 2662671-2675 CrossRef ADS Google Scholar

[36] Kleykamp H. J Nucl Mater, 1985, 131221-246 CrossRef ADS Google Scholar

[37] Kleykamp H. J Nucl Mater, 1993, 20682-86 CrossRef ADS Google Scholar

[38] Matzke H. Science of Advanced LMFBR Fuels: A Monograph on Solid State Physics, Chemistry and Technology of Carbides, Nitrides and Carbonitrides of Uranium and Plutonium. North Holland: Springer Netherlands, 1986. Google Scholar

[39] Zhang Y, Lan J, Wu Q, Wang C, Bo T, Chai Z, Shi W. Sci China Chem, 2015, 58: 1–7. Google Scholar

[40] Crispin KL, Saha S, Morgan D, Van Orman JA. Earth Planet Sc Lett, 2012, 357: 42–53. Google Scholar

[41] Bengtson A, Nam HO, Saha S, Sakidja R, Morgan D. Comp Mater Sci, 2014, 83362-370 CrossRef Google Scholar

[42] Saha S, Bengtson A, Crispin KL, van Orman JA, Morgan D. Phys Rev B, 2011, 84184102 CrossRef ADS Google Scholar

qqqq

Contact and support