logo

SCIENTIA SINICA Mathematica, Volume 49 , Issue 3 : 389(2019) https://doi.org/10.1360/N012017-00152

Regular subspaces of regular Dirichlet forms

More info
  • ReceivedJul 10, 2017
  • AcceptedNov 30, 2017
  • PublishedDec 28, 2018

Abstract


Funded by


Acknowledgment

第二作者应坚刚是王梓坤先生曾经任教过的南开大学数学系 1978 年入学的本科生, 虽然没有上过王梓坤先生的课, 却是听着王先生的 事迹读完大学的. 后随吴荣教授读硕士, 王先生是硕士答辩委员会的主席, 尽管硕士论文没做很好的工作, 但还是 得到了王先生的鼓励. 在读研究生期间阅读了王先生所著的书《布朗运动和位势》, 为之吸引而走上研究Markov 过程的学术道路. 应坚刚曾经是王先生的博士生, 后来由于某种原因没有读完, 但一直自认为 是王先生的弟子之一. 能获得《中国科学》的约稿, 庆祝王先生的 90 华诞, 作者感到非常荣幸, 也非常感谢, 并祝王先生长寿, 身体健康.


References

[1] Fang X, Fukushima M, Ying J. On regular Dirichlet subspaces of $H^1(I)$ and associated linear diffusions. Osaka J Math, 2005, 42: 27--41. Google Scholar

[2] Li L, Ying J. Regular subspaces of Dirichlet forms. In: Festschrift Masatoshi Fukushima. Hackensack: World Scientific Publishing, 2015, 397--420. Google Scholar

[3] Li L, Ying J. On structure of regular Dirichlet subspaces for one-dimensional Brownian motion. Ann Probab, 2017, 45: 2631-2654 CrossRef Google Scholar

[4] Fang X, He P, Ying J. Dirichlet forms associated with linear diffusions. Chin Ann Math Ser B, 2010, 31: 507-518 CrossRef Google Scholar

[5] Li L, Ying J. On symmetric linear diffusions. Trans Amer Math Soc, 2017, in press. Google Scholar

[6] Li L, Ying J. Regular Dirichlet extensions of one-dimensional Brownian motion.. arXiv Google Scholar

[7] Blumenthal R M, Getoor R K. Markov Processes and Potential Theory. New York: Academic Press, 1968. Google Scholar

[8] Fukushima M, Oshima Y, Takeda M. Dirichlet Forms and Symmetric Markov Processes. Berlin: Walter de Gruyter, 2011. Google Scholar

[9] Ma Z M, Röckner M. Introduction to the Theory of (Nonsymmetric) Dirichlet Forms. Berlin-Heidelberg: Springer-Verlag, 1992. Google Scholar

[10] Ying J. Bivariate Revuz measures and the Feynman-Kac formula. Ann Inst H Poincaré Probab Statist, 1996, 32: 251--287. Google Scholar

[11] Ying J. Killing and subordination. Proc Amer Math Soc, 1996, 124: 2215-2223 CrossRef Google Scholar

[12] Fukushima M, Ying J. A note on regular Dirichlet subspaces. Proc Amer Math Soc, 2003, 131: 1607-1611 CrossRef Google Scholar

[13] Chen Z Q, Fukushima M, Ying J. Traces of symmetric Markov processes and their characterizations. Ann Probab, 2006, 34: 1052-1102 CrossRef Google Scholar

[14] Fukushima M, He P, Ying J. Time changes of symmetric diffusions and Feller measures. Ann Probab, 2004, 32: 3138-3166 CrossRef Google Scholar

[15] Fukushima M. Dirichlet Forms and Markov Processes. Amsterdam-Oxford-New York: Kodansha and North-Holland, 1980. Google Scholar

[16] Fukushima M. From one dimensional diffusions to symmetric Markov processes. Stochastic Process Appl, 2010, 120: 590-604 CrossRef Google Scholar

[17] Ying J, Zhao M. The uniqueness of symmetrizing measure of Markov processes. Proc Amer Math Soc, 2010, 138: 2181-2185 CrossRef Google Scholar

[18] Fitzsimmons P J, Li L. Class of smooth functions in Dirichlet spaces.. arXiv Google Scholar

[19] Itô K, McKean H P Jr. Diffusion Processes and Their Sample Paths. Berlin-New York: Springer-Verlag, 1974. Google Scholar

qqqq

Contact and support