论非平衡态统计物理基本方程——兼论非平衡熵演化方程和熵产生率公式

Abstract

该文综述了作者的研究成果. 十多年前, 作者提出了一个新的非平衡态统计物理基本方程以取代现有的Liouville 方程. 这就是6<italic>N</italic> 维相空间的随机速度型Langevin 方程或其等价的Liouville 扩散方程. 这个方程是时间反演不对称的. 它表明, 统计热力学系统内的粒子运动形式同时具有漂移扩散二重性, 统计热力学运动规律是由动力学规律和随机性速度二者叠加而成的, 既有确定性又有随机性, 因而有别于动力学系统内的粒子运动规律. 粒子的随机扩散运动正是宏观不可逆性的微观起源. 由这个基本方程出发, 求得了BBGKY 扩散方程链、Boltzmann 碰撞扩散方程和流体力学方程, 如质量漂移扩散方程、Naiver-Stokes 方程和热导方程等. 更重要的, 首次建立了6<italic>N</italic> 维、6 维和3 维相空间的非平衡熵密度随时空变化的非线性演化方程, 预言了熵扩散的存在. 这个熵演化方程在非平衡熵理论中起着核心作用. 它指明, 非平衡熵密度随时间的变化率是由其在空间的漂移、扩散和产生三者引起的. 进而由这个演化方程, 求得了6<italic>N</italic> 维和6 维相空间的熵产生率公式、即熵增加定律公式, 论证了非平衡系统内部吸引力能导致熵减少而排斥力则引起另一种熵增加, 导出了熵减少率或另一种熵增加率的共同表达式, 给出了统一热力学退化和自组织进化的理论表达式, 阐明了趋向平衡的熵扩散机理. 作为应用, 还将这些熵公式用于计算和讨论了一些实际非平衡态和定态物理课题. 所有这些结果都是严格统一从新的基本方程推导出的, 未增补任何其他新假设.

References

SciEngine
CART
CUSTOMER
中文
LOGIN