logo

SCIENTIA SINICA Vitae, Volume 44 , Issue 3 : 238-247(2014) https://doi.org/10.1360/052013-234

Implications of the Ecophysiological Adaptation of Plants on Tropical Karst Habitats for the Ecological Restoration of Desertified Rocky Lands in Southern China

More info
  • AcceptedFeb 11, 2014
  • PublishedMar 18, 2014

Abstract


References

[1] 袁道先. 中国西南部的岩溶及其与华北岩溶的对比. 第四纪研究, 1992, 4: 352-361. Google Scholar

[2] 曹建华, 袁道先, 潘根兴. 岩溶生态系统中的土壤. 地球科学进展, 2003, 18: 37-44. Google Scholar

[3] 蒋忠诚. 论南方岩溶山区生态环境的元素有效态. 中国岩溶, 2000, 19: 123-128. Google Scholar

[4] 邓艳, 蒋忠诚, 罗为群, 等. 不同岩溶生态系统中元素的地球化学迁移特征比较—以广西弄拉和弄岗自然保护区为例. 中国岩溶, 2006, 25: 168-171. Google Scholar

[5] 章程, 谢运球, 吕勇, 等. 广西弄拉峰丛山区土壤有机质与微量营养元素有效态. 中国岩溶, 2006, 25: 63-66. Google Scholar

[6] 付培立. 热带喀斯特森林常绿和落叶树木水力结构、水分关系以及光合能力的对比研究. 博士学位论文. 北京: 中国科学院研究生院, 2011. Google Scholar

[7] 吴春林. 广西热带石灰山季节雨林分类与排序. 植物生态学与地植物学学报, 1991, 15: 17-26. Google Scholar

[8] 王洪, 朱华, 李保贵. 西双版纳石灰山森林植被. 广西植物, 1997, 17: 101-117. Google Scholar

[9] Zhu H. Ecology and biogeography of the limestone vegetation in southern Yunnan, SW China. Kunming: Yunnan Science & Technology Press, 2002. 67. Google Scholar

[10] 黄乘明, 薛跃规, 韦毅, 等. 白头叶猴栖息环境与栖息地选择的研究. 兽类学报, 2000, 20: 180-185. Google Scholar

[11] 吴名川, 韦振逸, 何农林. 黑叶猴在广西的分布及生态. 野生动物, 1987, 38: 12-13, 19. Google Scholar

[12] Mclaughlin S B, Wimmer R. Calcium physiology and terrestrial ecosystem processes. New Phytol, 1999, 142: 373-417. Google Scholar

[13] Hirschi K D. The calcium conundrum. Both versatile nutrient and specific signal. Plant Physiol, 2004, 136: 2438-2442. Google Scholar

[14] Sanik J Jr, Perkins A T, Schrenk W G. The effect of the calcium-magnesium ratio on the solubility and availability of plant nutrients. Soil Sci Soc Amer Proc, 1952, 16: 263-267. Google Scholar

[15] Dixon J M, Todd H. Koeleria macrantha: performance and distribution in relation to soil and plant calcium and magnesium. New Phytol, 2001, 152: 59-68. Google Scholar

[16] Göttlein A, Baier R, Mellert K H. New nutrition levels for the main forest tree species in Central Europe—A statistical derivation from van den Burg's literature compilation. Allgemeine Forst und Jagdzeitung, 2011, 182: 173-186. Google Scholar

[17] Cao K F. Leaf anatomy and chlorophyll content of 12 woody species in contrasting light conditions in a Bornean heath forest. Can J Bot, 2000, 78: 1245-1253. Google Scholar

[18] 宋富强, 曹坤芳. 元江干热河谷植物叶片解剖和养分含量特征. 应用生态学报, 2005, 16: 33-38. Google Scholar

[19] Fu P L, Jiang Y J, Wang A Y, et al. Stem hydraulic traits and leaf water-stress tolerance are coordinated with the leaf phenology of angiosperm trees in an Asian tropical dry karst forest. Ann Bot, 2012, 110: 189-199. Google Scholar

[20] 王爱英, 姜艳娟, 郝广友, 等. 季节性干旱胁迫对石灰山三种常绿优势树种的水分和光合生理的影响. 云南植物研究, 2008, 30: 325-332. Google Scholar

[21] Tyree M T, Davis S D, Cochard H. Biophysical perspectives of xylem evolution: is there a tradeoff of hydraulic efficiency for vulnerability to dysfunction? IAWA J, 1994, 15: 335-360. Google Scholar

[22] Sperry J S. Evolution of water transport and xylem structure. Int J Plant Sci, 2003, 164: S115-S127. Google Scholar

[23] 李吉跃, 翟洪波. 木本植物水力结构与抗旱性. 应用生态学报, 2000, 11: 301-305. Google Scholar

[24] 安锋, 张硕新, 赵平娟. 木本植物木质部栓塞脆弱性研究进展. 西北林学院学报, 2002, l7: 30-34. Google Scholar

[25] 樊大勇, 谢宗强. 木质部导管空穴化研究中的几个热点问题. 植物生态学报, 2004, 28: 126-132. Google Scholar

[26] Meinzer F C, Clearwater M J, Goldstein G. Water transport in trees: current perspectives, new insights and some controversies. Environ Exp Bot, 2001, 45: 239-262. Google Scholar

[27] Sperry J S, Nichols K L, Sullivan J E M, et al. Xylem embolism in ring-porous, diffuse-porous, and coniferous trees of northern Utah and interior Alaska. Ecology, 1994, 75: 1736-1752. Google Scholar

[28] Tyree M T, Zimmermann M H. Xylem Structure and the Ascent of Sap. Berlin: Springer, 2002. 283. Google Scholar

[29] Fan D Y, Jie S L, Liu C C, et al. The trade-off between safety and efficiency in hydraulic architecture in 31 woody species in a karst area. Tree Physiol, 2011, 31: 865-877. Google Scholar

[30] Choat B, Jansen S, Brodribb T J, et al. Global convergence in the vulnerability of forests to drought. Nature, 2012, 491: 752-756. Google Scholar

[31] 刘金玉, 付培立, 王玉杰, 等. 热带喀斯特森林常绿和落叶榕树的水力特征和水分关系与抗旱策略. 植物科学学报, 2012, 30: 484-493. Google Scholar

[32] Yurtsever Y, Gat J R. Atmospheric waters. In: Gat J R, Gonfianti R, eds. Stable Isotope Hydrology: Deuterium and Oxygen-18 in the Water Cycle. Technical report series 210. Vienna: International Atomic Energy Agency, 1981. 103-142. Google Scholar

[33] Querejeta J I, Estrada-Medina H, Allen M F, et al. Water source partitioning among trees growing on shallow karst soils in a seasonally dry tropical climate. Oecologia, 2007, 152: 26-36. Google Scholar

[34] 国家林业局. 中国石漠化状况公报. 中国绿色时报, 2012/6/18/第3版. Google Scholar

[35] 单洋天. 我国西南岩溶石漠化及其地质影响因素分析. 中国岩溶, 2006, 25: 163-167. Google Scholar

[36] 周洁敏. 我国石漠化现状与防治对策. 林业资源管理, 2009, 3: 13-16. Google Scholar

[37] 陇光国. 喀斯特山区生态建设与金银花(黄褐毛忍冬)产业发展. 贵州农业科学, 2005, 33: 103-104. Google Scholar

[38] 李文付, 黄大勇. 广西喀斯特峰丛地区金银花产业开发与可持续利用. 广西林业科学, 2006, 35: 46-48. Google Scholar

[39] 蔡志全. 特种木本油料作物星油藤的研究进展. 中国油脂, 2011, 36: 1-6. Google Scholar

[40] Silvera K, Santiago L S, Cushman J C, et al. Crassulacean acid metabolism and epiphytism linked to adaptive radiations in the Orchidaceae. Plant Physiol, 2009, 149: 1838-1847. Google Scholar

[41] Guralnick L J, Ting I P, Lord E M. Crassulacean acid metabolism in the Gesneriaceae. Am J Bot, 1986, 73: 336-345. Google Scholar

[42] 吕惠珍, 余丽莹, 黄宝优, 等. 广西苦苣苔科药用植物资源. 中国民族民间医药杂志, 2010, 7: 6-10. Google Scholar

[43] 文和群, 钟树华, 韦毅刚. 广西苦苣苔科观赏植物资源. 广西植物, 1998, 18: 209-212. Google Scholar

qqqq

Contact and support