logo

SCIENTIA SINICA Chimica, Volume 43 , Issue 12 : 1713-1729(2013) https://doi.org/10.1360/032013-261

Femtosecond time-resolved fluorescence non-collinear optical parametric amplification spectroscopy

More info
  • AcceptedSep 18, 2013
  • PublishedDec 12, 2013

Abstract


References

[1] 翁羽翔, 陈海龙. 超快激光光谱原理与技术基础. 北京: 化学工业出版社, 2013. Google Scholar

[2] Birch DJS, Imhof RE. Time-domain fluorescence spectroscopy using time-correlated single-photon counting. In: Lakowicz JR. Topics in Fluorescence Spectroscopy. New York: Kluwer Academic Publishers, 1991. 1-95. Google Scholar

[3] Li H, Shao YH, Wang Y, Qu JL, Niu HB. Improving the precision of fuorescence life time measurement using a streakcamera. Chin Opt Lett, 2010, 8: 934-936. Google Scholar

[4] Zhang JY, Shreenath AP, Kimmel M, Zeek E, Trebino R, Link S. Measurement of the intensity and phase of attojoule femtosecond light pulses using optical-parametric-amplification cross-correlation frequency-resolved optical gating. Opt Express, 2003, 11: 601-609. Google Scholar

[5] Chen XH, Han XF, Weng YX, Zhang JY. Transient spectrometer for near-IR fluorescence based on parametric frequency up conversion. Appl Phys Lett, 2006, 89: 061127. Google Scholar

[6] Fita P, Stepanenko Y, Radzewicz C. Femtosecond transient fluorescence spectrometer based on parametric amplification. Appl Phys Lett, 2005, 86: 021909. Google Scholar

[7] Han XF, Chen XH, Weng YX, Zhang JY. Ultrasensitive femtosecond time-resolved fluorescence spectroscopy for relaxation processes by using parametric amplification. J Opt Soc Am B, 2007, 24: 1633-1638. Google Scholar

[8] Weng YX, Han XF, Zhang JY. Determination of the detection limit for a noncollinear optical parametric amplification-gated femtosecond time-resolved fluorescence spectrometer: Reply to the comment on “ultrasensitive femtosecond time-resolved fluorescence spectroscopy for relaxation processes by using parametric amplification”. J Opt Soc Am B, 2008, 25: 1627-1631. Google Scholar

[9] Han XF, Weng YX, Wang R, Chen XH, Luo KH, Wu LA, Zhao JM. Single-photon level ultrafast all-optical switching. Appl Phys Lett, 2008, 92: 151109. Google Scholar

[10] Han XF, Weng YX, Pan AL, Zou BS, Zhang JY. Observation of delayed fluorescence in CdSxSe1-x nanobelts by femtosecond time-resolved fluorescence spectroscopy. Appl Phys Lett, 2008, 92: 032102. Google Scholar

[11] Chen HL, Dang W, Xie J, Zhao JQ, Weng YX. Ultrafast energy transfer pathways in R-phycoerythrin from Polysiphonia urceolata. Photosynth Res, 2012, 111: 81-86. Google Scholar

[12] Chen HL, Weng YX, Li XY. Ultrafast energy transfer in an artificial antenna molecule measured by transient fluorescence spectroscopy. Chin J Chem Phys, 2011, 24: 253-255. Google Scholar

[13] Krylov V, Kalintsev A, Rebane A, Erni D, Wild UP. Noncollinear parametric generation in LiIO3 and β-barium borate by frequency-doubled femtosecond Ti: Sapphire laser pulses. Opt Lett, 1995, 20: 151-153. Google Scholar

[14] Chen HL, Weng YX, Zhang JY. Noncollinear optical parametric amplifier based femtosecond time-resolved transient fluorescence spectra: Characterization and correction. J Opt Soc Am B, 2009, 26: 1627-1634. Google Scholar

[15] Eimerl D, Davis L, Velsko S, Graham EK, Zalkin A. Optical, mechanical, and thermal properties of barium borate. J Appl Phys, 1987, 62: 1968-1983. Google Scholar

[16] Yang J, Yang F, Zhang JY, Cui DF, Peng QJ, Xu ZY. Pulse broadening of deep ultraviolet femtosecond laser from second harmonic generation in KBe2BO3F2 crystal. Opt Commun, 2013, 288: 114-117. Google Scholar

[17] Zhao LJ, Pérez-Lustres JL, Farztdinov V, Ernsting NP. Femtosecond fluorescence spectroscopy by up conversion with tilted gate pulses. PhysChemChemPhys, 2005, 7: 1716-1725. Google Scholar

[18] Arzhantsev S, Maroncelli M. Design and characterization of a femtosecond fluorescence spectrometer based on optical Kerr gating. Appl Spectrosc, 2005, 59: 206-220. Google Scholar

[19] 陈海龙. 光合模拟体系及海藻捕光蛋白的超快光谱研究. 博士学位论文. 北京: 中国科学院物理研究所, 2011. Google Scholar

[20] Dang W, Mao PC, Weng YX. Coherent photon interference elimination and spectral correction in femtosecond time-resolved fluorescence non-collinear optical parametric amplification spectroscopy. Rev Sci Instrum, 2013, 84: 073105. Google Scholar

[21] Kleinman DA. Theory of Optical Parametric Noise. Phys Rev, 1968, 174: 1027-1041. Google Scholar

[22] Pan AL, Yang H, Liu RB, Yu RC, Zou BS, Wang ZL. Color-tunable photoluminescence of alloyed CdSxSe1-x nanobelts. J Am Chem Soc, 2005, 127: 15692-15693. Google Scholar

[23] 韩晓锋. 飞秒光参量放大技术的若干应用. 博士学位论文. 北京: 中国科学院物理研究所, 2008. Google Scholar

[24] Shah J. Ultrafast Spectroscopy of Semiconductors and Semiconductor Nanostructure. Berlin: Springer, 1996. Google Scholar

[25] Wang YF, Chen HL, Wu HX, Li XY, Weng YX. Fluorescence quenching in a perylenetetracarboxylic diimide trimer. J Am Chem Soc, 2009, 131: 30-31. Google Scholar

[26] Kasha M, Rawls HR, Ashraf El-Bayoumi M. The exciton model in molecular spectroscopy. Pure Appl Chem, 1965, 11: 371-392. Google Scholar

qqqq

Contact and support