logo

Journal of Energy Chemistry, Volume 29 : 17-22(2019) https://doi.org/10.1016/j.jechem.2018.01.025

Hard carbon derived from rice husk as low cost negative electrodes in Na-ion batteries

More info
  • ReceivedNov 16, 2017
  • AcceptedJan 30, 2018
  • PublishedFeb 13, 2018

Abstract


Acknowledgment

M.K.R. would like to acknowledge the COST Association and COST Action CA15107 “MultiFunctional Nano-Carbon Composite Materials Network (MultiComp)” for the financial support.


References

[1] D.A. Stevens, J.R. Dahn, J. Electrochem. Soc., 147 (2000), pp. 1271-1273. Google Scholar

[2] S. Komaba, W. Murata, T. Ishikawa, N. Yabuuchi, T. Ozeki, T. Nakayama, A. Ogata, K. Gotoh, K. Fujiwara, Adv. Funct. Mater., 21 (2011), pp. 3859-3867. CrossRef Google Scholar

[3] J. Ding, H. Wang, Z. Li, A. Kohandehghan, K. Cui, Z. Xu, B. Zahiri, X. Tan, E.M. Lotfabad, B.C. Olsen, D. Mitlin, ACS Nano, 7 (2013), pp. 11004-11015. CrossRef Google Scholar

[4] Y. Cao, L. Xiao, M.L. Sushko, W. Wang, B. Schwenzer, J. Xiao, Z. Nie, L.V. Saraf, Z. Yang, J. Liu, Nano Lett., 12 (2012), pp. 3783-3787. CrossRef Google Scholar

[5] Y. Wen, K. He, Y. Zhu, F. Han, Y. Xu, I. Matsuda, Y. Ishii, J. Cumings, C. Wang, Nat. Commun., 5 (2014), pp. 4033-4042. Google Scholar

[6] Y. Wang, C. Wang, Y. Wang, H. Liu, Z. Huang, ACS Appl. Mater. Interfaces, 8 (2016), pp. 18860-18866. CrossRef Google Scholar

[7] Y. Li, Y.-S. Hu, M.-M. Titirici, L. Chen, X. Huang, Adv. Energy Mater., 6 (2016), pp. 1600659-1600668. CrossRef Google Scholar

[8] Z. Wang, L. Qie, L. Yuan, W. Zhang, X. Hu, Y. Huang, Carbon, 55 (2013), pp. 328-334. Google Scholar

[9] D. Datta, J. Li, V.B. Shenoy, ACS Appl. Mater. Interfaces, 6 (2014), pp. 1788-1795. CrossRef Google Scholar

[10] W. Li, L. Zeng, Z. Yang, L. Gu, J. Wang, X. Liu, J. Cheng, Y. Yu, Nanoscale, 6 (2014), pp. 693-698. CrossRef Google Scholar

[11] E. Irisarri, A. Ponrouch, M.R. Palacin, J. Electrochem. Soc., 162 (2015), pp. A2476-A2482. CrossRef Google Scholar

[12] M.-S. Balogun, Y. Luo, W. Qiu, P. Liu, Y. Tong, Carbon, 98 (2016), pp. 162-178. Google Scholar

[13] C.R. Pérez, S.-H. Yeon, J. Ségalini, V. Presser, P.-L. Taberna, P. Simon, Y. Gogotsi, Adv. Funct. Mater., 23 (2013), pp. 1081-1089. CrossRef Google Scholar

[14] M. Wahid, D. Puthusseri, Y. Gawli, N. Sharma, S.B. Ogale, ChemSusChem, 0 (2018), 10.1002/cssc.201701664. CrossRef Google Scholar

[15] J. Górka, C. Vix-Guterl, C. MateiGhimbeu, C, 2 (2016), p. 24. CrossRef Google Scholar

[16] P. Polrolniczak, P. Nowicki, K. Wasinski, R. Pietrzak, M. Walkowiak, Solid State Ionics, 297 (2016), pp. 59-63. Google Scholar

[17] Y. Zhang, S. Liu, X. Zheng, X. Wang, Y. Xu, H. Tang, F. Kang, Q.-H. Yang, J. Luo, Adv. Funct. Mater., 27 (2017), pp. 1604687-1604695. CrossRef Google Scholar

[18] N. Soltani, A. Bahrami, M.I. Pech-Canul, L.A. González, Chem. Eng. J., 264 (2015), pp. 899-935. Google Scholar

[19] C.E. Byrne, D.C. Nagle, Carbon, 35 (1991), pp. 259-266. Google Scholar

[20] E.Y.L. Teo, L. Muniandy, E.-P. Ng, F. Adam, A.R. Mohamed, R. Jose, K.F. Chong, Electrochim. Acta, 192 (2016), pp. 110-119. Google Scholar

[21] M.K. Rybarczyk, H.-J. Peng, C. Tang, M. Lieder, Q. Zhang, M.-M. Titirici, Green Chem., 18 (2016), pp. 5169-5179. Google Scholar

[22] D.-L. Vu, J.-S. Seo, H.-Y. Lee, J.-W. Lee, RSC Adv., 7 (2017), pp. 4144-4151. CrossRef Google Scholar

[23] Y. Yi, B.-D. Lee, S.-K. Kim, D.-H. Jung, E.-M. Jung, S.-M. Hwang, S.-Y. Choi, D.-H. Peck, Int. J. Electrochem. Sci., 11 (2016), pp. 5909-5923. CrossRef Google Scholar

[24] G.T.-K. Fey, C.-L. Chen, J. Power Sour., 97-98 (2001), pp. 47-51. Google Scholar

[25] G.T.-K. Fey, Y.-D. Cho, C.-L. Chen, Y.-Y. Lin, T.P. Kumar, S.-H. Chan, Pure Appl. Chem., 82 (2010), pp. 2157-2165. CrossRef Google Scholar

[26] H. Li, F. Shen, W. Luo, J. Dai, X. Han, Y. Chen, Y. Yao, H. Zhu, K. Fu, E. Hitz, L. Hu, ACS Appl. Mater. Interfaces, 8 (2016), pp. 2204-2210. CrossRef Google Scholar

[27] E.M. Lotfabad, J. Ding, K. Cui, A. Kohandehghan, W.P. Kalisvaart, M. Hazelton, D. Mitlin, ACS Nano, 7 (2014), pp. 7115-7129. CrossRef Google Scholar

[28] Y. Zhu, M. Chen, Q. Li, C. Yuan, C. Wang, Carbon, 123 (2017), pp. 727-734. Google Scholar

[29] K. Wang, Y. Jin, S. Sun, Y. Huang, J. Peng, J. Luo, Q. Zhang, Y. Qiu, C. Fang, J. Han, ACS Omega, 2 (2017), pp. 1687-1695. CrossRef Google Scholar

[30] W. Lv, F. Wen, J. Xiang, J. Zhao, L. Li, L. Wang, Z. Liu, Y. Tian, Electrochim. Acta, 176 (2015), pp. 533-541. Google Scholar

[31] X. Zhu, Q. Li, S. Qiu, X. Liu, L. Xiao, X. Ai, H. Yang, Y. Cao, JOM, 68 (2016), pp. 2579-2584. CrossRef Google Scholar

[32] F. Shen, H. Zhu, W. Luo, J. Wan, L. Zhou, J. Dai, B. Zhao, X. Han, K. Fu, L. Hu, ACS Appl. Mater. Interfaces, 7 (2015), pp. 23291-23296. CrossRef Google Scholar

[33] P. Wang, B. Qiao, Y. Du, Y. Li, X. Zhou, Z. Dai, J. Bao, J. Phys. Chem. C, 119 (2015), pp. 21336-21344. CrossRef Google Scholar

[34] K. Kim, D.G. Lim, C.W. Han, S. Osswald, V. Ortalan, J.P. Youngblood, V.G. Pol, ACS Sustainable Chem. Eng., 5 (2017), pp. 8720-8728. CrossRef Google Scholar

[35] K. Hong, L. Qie, R. Zeng, Z. Yi, W. Zhang, D. Wang, W. Yin, C. Wu, Q. Fan, W. Zhang, Y. Huang, J. Mater. Chem. A, 2 (2014), pp. 12733-12738. Google Scholar

[36] H. Wang, W. Yu, J. Shi, N. Mao, S. Chen, W. Liu, Electrochim. Acta, 188 (2016), pp. 103-110. CrossRef Google Scholar

[37] K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquerol, T. Siemieniewska, Pure Appl. Chem., 57 (1985), pp. 603-619. CrossRef Google Scholar

[38] Z.Q. Li, C.J. Lu, Z.P. Xia, Y. Zhou, Z. LuoX-ray diffraction patterns of graphite and turbostratic carbon, Carbon N. Y., 45 (2007), pp. 1686-1695. Google Scholar

[39] Z.Q. Li, C.J. Lu, Z.P. Xia, Y. Zhou, Z. Luo, Carbon, 45 (2007), pp. 1686-1695. Google Scholar

[40] A.C. Ferrari, J. Robertson, Phys. Rev. B, 61 (2000), pp. 14095-14107. Google Scholar

[41] M. Winter, J.O. BesenhardHandbook of Battery Materials, C. Daniel, J.O. Besenhard (Eds.) (2nd ed.), Wiley (2011). Google Scholar

  • Fig. 1

    (a) N2 isothermal sorption and desorption profile, (b) corresponding pore size distribution based on density functional theory of RH900, RH1300, RH1600, respectively.

  • Fig. 2

    XRD patterns for RH900, RH1300, RH1600, respectively.

  • Fig. 3

    Comparison of crystallite size and intergraphene layer spacing for RHs.

  • Fig. 4

    Raman spectra for RH900, RH1300, RH1600.

  • Fig. 5

    (a–c) HRTEM and SAED images of RH900, RH1300, RH1600, respectively.

  • Fig. 6

    Electrochemical performance of the HC electrodes. (a) Galvanostatic 1st discharge/charge profiles of HC at a current rate of 0.1 C, (b) cyclic performance of RHs at a current rate of 0.1 C, (c) rate capability of RHs from 0.1 C to 2 C.

  • Table 1.  

    Table 1. Comparison of physical parameters and electrochemical properties for biomass precursors used as anode in Na-ion batteries.

    Biomass precursor

    SSA (m2 g−1)

    Reversible capacity (mAh g−1)

    Rate (mA g−1)

    Capacity retention (%)

    Carbonization temperature (°C)

    References

    Oak leaves

    161

    360 (10 cycles)

    10

    75

    1000

    [26]

    Banana peels

    130.8

    355 (10 cycles)

    50

    93

    1100

    [27]

    Humic acid

    3.21

    345 (250 cycles)

    25

    95

    1500

    [28]

    Mangosteen shell

    8.9

    330 (100 cycles)

    20

    ∼98

    1500

    [29]

    Peanut shell

    706.1

    325 (10 cycles)

    100

    -

    600

    [30]

    Cotton

    38

    315 (100 cycles)

    30

    97

    1300

    [7]

    Wool

    152

    303 (100 cycles)

    80

    92

    1100

    [31]

    Peat Moss

    196.6

    298 (10 cycles)

    50

    -

    1100

    [3]

    RH1600

    224.6

    276 (100 cycles)

    30

    93

    1600

    this work

    Wood fiber

    126

    240 (200 cycles)

    20

    72

    1000

    [32]

    Lotus Petioles

    46.4

    232 (80 cycles)

    50

    99.1

    1100

    [33]

    Pistachio shell

    760.9

    225 (50 cycles)

    10

    86.3

    1000

    [34]

    Pomelo peels

    1272

    181 (220 cycles)

    200

    27

    700

    [35]

    Peanut skin

    1930

    47 (200 cycles)

    10

    86

    800

    [36]

  • Table 2.  

    Table 2. Summary of BET surface area and pore volume of RH900, RH1300, RH1600.

    Material

    BET surface (m2 g−1)

    DFT pore volume (cm3 g−1)

    Micro < 2 µm

    Meso < 20 µm

    Macro > 20 µm

    Total

    RH900

    265

    0.074

    0.206

    0.180

    0.460

    RH1300

    285

    0.057

    0.203

    0.180

    0.440

    RH1600

    218

    0.036

    0.184

    0.190

    0.410

  • Table 3.  

    Table 3. Charge capacities and losses depending on the Na storage regions evaluated from charge/discharge profiles.

    Material

    Reversible charge (mAh g–1)

    Discharge (mAh g–1)

    Charge (mAh g–1)

    Na loss (%)

    Sloping

    Plateau

    Sloping

    Plateau

    Sloping

    Plateau

    RH900

    136

    400

    0

    136

    0

    66

    -

    RH1300

    180

    200

    150

    80

    100

    60

    33

    RH1600

    276

    250

    270

    86

    190

    66

    30

qqqq

Contact and support