logo

Journal of Energy Chemistry, Volume 28 : 61-72(2019) https://doi.org/10.1016/j.jechem.2018.01.011

Analysis of CO2 utilization into synthesis gas based on solar thermochemical CH4-reforming

More info
  • ReceivedNov 22, 2017
  • AcceptedJan 18, 2018
  • PublishedJan 31, 2018

Abstract


Acknowledgment

This work was supported by the National Natural Science Foundation of China (No. 51522601), Chang Jiang Young Scholars Program of China (Q2016186) and the Fok Ying Tong Education Foundation of China (No. 141055).


References

[1] E. Alper, O.Y. Orhan, Petroleum, 3 (2017), pp. 109-126. Google Scholar

[2] M. van der Spek, E. Sanchez Fernandez, N. Henrik Eldrup, R. Skagestad, A. Ramirez, A. Faaij, Int. J. Greenh. Gas Control, 56 (2017), pp. 221-236. Google Scholar

[3] Gao W., Zhou T., Gao Y., B. Louis, D. O'Hare, Wang Q., J. Energy Chem., 26 (2017), pp. 830-838. Google Scholar

[4] R.M. Cuellar-Franca, A. Azapagic, J. CO2 Util., 9 (2015), pp. 82-102. Google Scholar

[5] J. Patricio, A. Angelis-Dimakis, A. Castillo-Castillo, Y. Kalmykova, L. Rosado, J. CO2 Util., 17 (2017), pp. 50-59. Google Scholar

[6] C. Fernández-Dacosta, M. Van Der Spek, Hung C.R., G.D. Oregionni, R. Skagestad, P. Parihar, D.T. Gokak, A.H. Strømman, A. Ramirez, J. CO2 Util., 21 (2017), pp. 405-422. Google Scholar

[7] Chen Q., Lv M., Tang Z., Wang H., Wei W., Sun Y., J. CO2 Util., 14 (2016), pp. 1-9. CrossRef Google Scholar

[8] V.M. Wheeler, R. Bader, P.B. Kreider, M. Hangi, S. Haussener, W. Lipiński, Sol. Energy, 156 (2017), pp. 149-168. Google Scholar

[9] A. Cruz-Hernández, J.A. Mendoza-Nieto, H. Pfeiffer, J. Energy Chem., 26 (2017), pp. 942-947. Google Scholar

[10] P.T. Krenzke, J.R. Fosheim, J.H. Davidson, Sol. Energy, 156 (2017), pp. 48-72. Google Scholar

[11] B. Guene Lougou, Hong J., Shuai Y., Huang X., Yuan Y., Tan H., Sol. Energy, 148 (2017), pp. 117-127. Google Scholar

[12] W.C. Chueh, C. Falter, M. Abbott, D. Scipio, P. Furler, S.M. Haile, A. Steinfeld, Science, 330 (6012) (2010), pp. 1797-1801. CrossRef Google Scholar

[13] M. Romero, A. Steinfeld, Energy Environ. Sci., 5 (2012), p. 9234. CrossRef Google Scholar

[14] Ruan C., Tan Y., Li L., Wang J., Liu X., Wang X., AIChE J., 63 (2017), pp. 3450-3462. CrossRef Google Scholar

[15] Mao Q.J., Renew. Sust. Energy Rev., 59 (2016), pp. 320-327. Google Scholar

[16] M. Tri Luu, D. Milani, A. Bahadori, A. Abbas, J. CO2 Util., 12 (2015), pp. 62-76. Google Scholar

[17] W. Schakel, G. Oreggioni, B. Singh, A. Strømman, A. Ramírez, J. CO2 Util., 16 (2016), pp. 138-149. Google Scholar

[18] Wang F., Xu L., Shi W., J. CO2 Util., 16 (2016), pp. 318-327. Google Scholar

[19] Zhang G., Zhao P., Xu Y., Qu J., J. CO2 Util., 18 (2017), pp. 326-334. Google Scholar

[20] T. Riedel, G. Schaub, Top Catal., 26 (1–4) (2003), pp. 145-156. Google Scholar

[21] Lu Y., Yan Q., Han J., Cao B., J. Street, Yu F., Fuel, 193 (2017), pp. 369-384. Google Scholar

[22] Wang Y., J. Energy Chem., 25 (2016), pp. 169-170. CrossRef Google Scholar

[23] Yu T., Yuan Q., Lu J., Ding J., Lu Y., Appl. Energy, 185 (2) (2017), pp. 1994-2004. Google Scholar

[24] M.S. Fan, A.Z. Abdullah, S. Bhatia, Chem. Cat. Chem., 1 (2) (2009), pp. 192-208. CrossRef Google Scholar

[25] M. Wenzel, N.V.R.A. Dharanipragada, V.V. Galvita H. Poelman, G.B. Marin, L. Rihko-Struckmann, K. Sundmacher, J. CO2 Util., 17 (2017), pp. 60-68. Google Scholar

[26] C. Agrafiotis, H.K. Storch, M. Roeb, C. Sattler, Renew. Sust. Energy Rev., 29 (2014), pp. 656-682. Google Scholar

[27] H.I. Villafán-Vidales, S. Abanades, C. Caliot, H. Romero-Paredes, Appl. Therm. Eng., 31 (16) (2011), pp. 3377-3386. Google Scholar

[28] Wang F., Cheng Z., Tan J., Jiaqi Z., Yu L., Linhua L., Appl. Therm. Eng., 111 (2017), pp. 1091-1100. CrossRef Google Scholar

[29] Qi J., Sun Y., Xie Z., M. Collins, Du H., Xiong T., J. Energy Chem., 24 (6) (2015), pp. 786-793. Google Scholar

[30] A. Woèrner, R. Tamme, Catal. Today, 46 (1998), pp. 165-174. Google Scholar

[31] N. Gokon, Y. Osawa, D. Nakazawa, T. Kodama, Int. J. Hydrog. Energy, 34 (4) (2009), pp. 1787-1800. Google Scholar

[32] Wang F., Tan J., Jin H., Yu L, Energy, 91 (2015), pp. 645-654. Google Scholar

[33] Wang F., Shuai Y., Wang Z., Leng Y., Tan H., Int. J. Hydrog. Energy, 39 (2) (2014), pp. 718-730. Google Scholar

[34] Wang F., Tan J., Shuai Y., Gong L., Tan H., Energy Convers. Manag, 87 (2014), pp. 956-964. Google Scholar

[35] E.G. Mahoney, J.M. Pusel, S.M. Stagg-Williams, S. Faraji, J. CO2 Util., 6 (2014), pp. 40-44. Google Scholar

[36] Li B., Xu Z., Jing F., Shizhong L., Ning W., Wei C., J. Energy Chem., 25 (6) (2016), pp. 1078-1085. Google Scholar

[37] B. Guene Lougou, Shuai Y., Xing H., Yuan Y., Tan H., Int. J. Heat Mass Transf., 111 (2017), pp. 410-418. Google Scholar

[38] B. Guene Lougou, Shuai Y., Zhang J., Huang X., Yuan Y., Tan H., Int. J. Hydrog. Energy, 41 (44) (2016), pp. 19936-19946. Google Scholar

[39] ,. Google Scholar

[40] B. Guene Lougou, Shuai Y., Chen X., Yuan Y., Tan H., Xing H., Front. Energy, 11 (4) (2017), pp. 480-492. CrossRef Google Scholar

[41] Yuan Q., Gu R., Ding J., Lu J., Appl. Therm. Eng., 125 (2017), pp. 633-643. Google Scholar

[42] V. Agrawal, V.C. Srivastava, J. CO2 Util., 5 (2014), pp. 10-16. Google Scholar

[43] S. Kraupl, A. Steinfeld, J. Sol. Energy Eng., 123 (2001), pp. 237-243. Google Scholar

[44] S. Bellan, E. Alonso, F. Gomez-Garcia, Chem. Eng. Sci., 101 (2013), pp. 81-89. Google Scholar

[45] E.J. Sheu, E.M.A. Mokheimer, A.F. Ghoniem, Int. J. Hydrog. Energy, 40 (38) (2015), pp. 12929-12955. Google Scholar

[46] A. Ozkan, T. Dufour, G. Arnoult, P. De Keyzer, A. Bogaerts, F. Reniers, J. CO2 Util., 9 (2015), pp. 74-81. Google Scholar

[47] T. Kodama, Pro. Energy Combust. Sci., 29 (2003), pp. 567-597. Google Scholar

[48] Zhang L., Wang X., Shang X., Mingwu T., Weizhong D., Xionggang L., J. Energy Chem., 26 (1) (2017), pp. 93-100. Google Scholar

[49] Su X., Yang X., Zhao B., Huang Y., J. Energy Chem., 26 (5) (2017), pp. 854-867. Google Scholar

[50] Xie H., Yu Q., Yao X., Duan W., Zuo Z., Qin Q., J. Energy Chem., 24 (3) (2015), pp. 299-308. Google Scholar

[51] Peng H., Ma Y., Liu W., Xu X., Fang X., Lian J., Wang X., Li C., Zhou W., Yuan P., J. Energy Chem., 24 (4) (2015), pp. 416-424. Google Scholar

[52] L.M. Kustov, A.L. Tarasov, O.P. Tkachenko, G.I. Kapustin, Ind. Eng. Chem. Res. (2017), 10.1021/acs.iecr.7b01254. CrossRef Google Scholar

  • Fig. 1

    Schematic diagram of solar thermochemical reactor for CO2 utilization: (a) incident radiation inlet, (b) quartz glass, (c) and (d) water cooling system, (e) mixture gas inlet, (f) aperture, (g) thermocouple, (h) stainless steel housing (304 steel), (i) insulating layer aluminum silicate, (j) insulating layer aluminum oxide, (k) reactant gas inlet pore, (l) pressure controlling, (m) water cooling system, (n) outlet (syngas).

  • Fig. 2

    Flowchart describing the strategy used for modeling reacting systems.

  • Fig. 3

    Model validation: (a) comparison of H2 mole fraction distribution with those from Yuan et al. [41], (b) comparison of the amount of syngas produced from the present model with those from Agrawal et al. [42].

  • Fig. 4

    Incident radiation heat flux and radiation temperature distribution at 0.05 atm and 1 m/s of gas flow inlet velocity. (a) Incident radiation heat flux distribution along the flow direction, (b) temperature distribution along the axial direction of the reactor.

  • Fig. 5

    Produced H2 and CO evolution as a function of reactor operating temperature at 0.05 atm and 1 m/s of gas flow inlet velocity: (a) H2 and CO mole fraction evolution, (b) amount of syngas production.

  • Fig. 6

    Species mole fraction and radiation temperature distribution at 1600 K, 1 atm and 0.1 m/s of gas flow inlet velocity.

  • Fig. 7

    H2 and CO production capability of methane reforming reaction at 1600 K, 1 atm and 0.1 m/s of gas flow inlet velocity: (a) H2 and CO produced from SMR, (b) H2 and CO produced from DRM, (c) syngas produced from SMR and DRM, (d) reaction temperature distribution.

  • Fig. 8

    Syngas production and reaction temperature distribution at different reactive flow inlet velocities at 1600 K and 0.05 atm: (a) reaction temperature distribution at high velocities of inlet gas flow, (b) syngas production, (c) reaction temperature distribution at low velocities of inlet gas flow.

  • Fig. 9

    Produce species mole fraction evolution as a function of flow inlet velocity at 1600 K and 0.05 atm: (a) effect of flow inlet velocity on H2 and CO production, (b) effect of flow inlet velocity on syngas production and H2:CO ratio.

  • Fig. 10

    Syngas production evolution and reaction temperature distribution at different operating pressures at 1600 K and 0.1 m/s of flow inlet velocity: (a) effect of operating pressure on syngas mole fraction distribution, (b) effect of operating pressure on reaction temperature distribution.

  • Fig. 11

    Effect of operating pressure on species conversion at 1600 K and 0.1 m/s of flow inlet velocity: (a) amount of syngas produced and the ratio of H2/CO as a function of pressure, (b) effect of pressure on CH4 conversion.

  • Fig. 12

    Expected gas production and methane conversion at 1600 K, 1 atm and 0.1 m/s of flow inlet velocity: (a) H2 and CO mole fraction distribution, (b) syngas mole fraction distribution inside the reactor.

  • Fig. 13

    Syngas mole fraction distribution and the effect of methane concentration on syngas yield and syngas quality and the ratio of H2:CO at 1600 K, 1 atm and 0.1 m/s of flow inlet velocity: (a) effect of CH4/CO2 concentration on syngas production, (b) syngas produced and the ratio of H2:CO as a function of CH4 concentration.

  • Fig. 14

    Effect of species concentration on syngas production and the ratio of H2:CO at 1600 K, 1 atm and 0.1 m/s of flow inlet velocity: (a) effect of the concentration of CH4 and CO2 on syngas production, (b) effect of the concentration of CH4 and CO2 on the ratio of H2:CO.

  • Fig. 15

    Effect of solar irradiance heat flux on syngas production based CO2/CH4 = 1.5 at 1 atm and 0.1 m/s of flow inlet velocity: (a) syngas mole fraction distribution inside the reactor, (b) amount of syngas produced as a function of radiation heat flux.

  • Fig. 16

    Effect of catalyst Ni/Al2O3 on syngas production at CO2/CH4 ratio = 1.5, 741.31 kW/m2, 1 atm, and 0.1 m/s of flow inlet velocity: (a) mixture of H2 and CO mole fraction distribution, (b) CH4 conversion, (c) CO2 conversion, (d) temperature distribution.

  • Fig. 17

    CH4 and CO2 conversion and produced species mole fraction distribution in the presence of Ni/Al2O3 catalyst at CO2/CH4 ratio= 1.5, 741.31 kW/m2, 1 atm, and 0.1 m/s of flow inlet velocity: (a) direct CH4 decomposition and possible carbon deposition, (b) CO2 and H2O formation from CH4 decomposition, (c) equilibrium product species mole fraction distribution from CDRM and RWGS reactions.

qqqq

Contact and support