Journal of Energy Chemistry, Volume 28 : 73-78(2019) https://doi.org/10.1016/j.jechem.2018.01.010

Highly efficient electrocatalysts derived from carbon black supported non-precious metal macrocycle catalysts for oxygen reduction reaction

More info
  • ReceivedDec 27, 2017
  • AcceptedJan 16, 2018
  • PublishedJan 31, 2018



This work was supported by the National Key Research and Development Program of China (2017YFA0206500); The National Natural Science Foundation (NSF) of China (51502012, 21676020); Beijing Natural Science Foundation (2162032, 17L20060); Young Elite Scientists Sponsorship Program by CAST (2017QNRC001); The Start-Up Fund for Talent Introduction of Beijing University of Chemical Technology (BUCTRC201420; BUCTRC201714); Talent Cultivation of State Key Laboratory of Organic-Inorganic Composites; Distinguished Scientist Program at BUCT (buctylkxj02) and the ‘‘111" Project of China (B14004).


[1] Z. Liu, Z. Zhao, Y. Wang, S. Dou, D. Yan, D. Liu, Z. Xia, S. Wang, Adv. Mater., 29 (2017), Article 1606207. CrossRef Google Scholar

[2] J. Guo, Y. Li, Y. Cheng, L. Dai, Z. Xiang, ACS Nano, 11 (2017), pp. 8379-8386. CrossRef Google Scholar

[3] P. Peng, Z. Zhou, J. Guo, Z. Xiang, ACS Energy Lett., 2 (2017), pp. 1308-1314. CrossRef Google Scholar

[4] Z. Xiang, Y. Xue, D. Cao, L. Huang, J.F. Chen, L. Dai, Angew. Chem. Int. Ed., 53 (2014), pp. 2433-2437. CrossRef Google Scholar

[5] J. Guo, M. Ning, Z. Xiang, J. Energy Chem., 26 (2017), pp. 1168-1173. Google Scholar

[6] L. Xu, G. Pan, X. Liang, G. Luo, C. Zou, G. Chen, J. Energy Chem., 23 (2014), pp. 498-506. Google Scholar

[7] L. Chen, J. Xiao, B. Liu, T. Yi, ACS Appl. Mater. Inter., 8 (2016), pp. 16649-16655. CrossRef Google Scholar

[8] Y. Ye, F. Cai, C. Yan, Y. Li, G. Wang, X. Bao, J. Energy Chem., 26 (2017), pp. 1174-1180. Google Scholar

[9] S. Gupta, S. Zhao, O. Ogoke, Y. Lin, H. Xu, G. Wu, ChemSusChem, 10 (2017), pp. 774-785. CrossRef Google Scholar

[10] Y. Zhu, W. Zhou, Z. Shao, Small, 13 (2017), Article 1603793. CrossRef Google Scholar

[11] C. Tang, M-M. Titirici, Q. Zhang, J. Energy Chem., 26 (2017), pp. 1077-1093. Google Scholar

[12] C. Tang, Q. Zhang, Adv. Mater., 29 (2017), Article 1604103. CrossRef Google Scholar

[13] J. Guo, Y. Cheng, Z. Xiang, ACS Sustain. Chem. Eng., 5 (2017), pp. 7871-7877. CrossRef Google Scholar

[14] M.Q. Wang, W.H. Yang, H.H. Wang, C. Chen, Z.Y. Zhou, S.G. Sun, ACS Catal., 4 (2014), pp. 3928-3936. CrossRef Google Scholar

[15] B. Wang, J. Power Sources, 152 (2005), pp. 1-15. Google Scholar

[16] C.W.B. Bezerra, L. Zhang, K. Lee, H. Liu, A.L.B. Marques, E.P. Marques, H. Wang, J. Zhang, Electrochim. Acta, 53 (2008), pp. 4937-4951. Google Scholar

[17] J.H. Kim, Y.J. Sa, H.Y. Jeong, S.H. Joo, ACS Appl. Mater. Inter., 9 (2017), pp. 9567-9575. CrossRef Google Scholar

[18] V.M. Dhavale, S.K. Singh, A. Nadeema, S.S. Gaikwad, S. Kurungot, Nanoscale, 7 (2015), pp. 20117-20125. CrossRef Google Scholar

[19] J. Huang, P. Zhai, H. Peng, W. Zhu, Q. Zhang, Sci. Bull., 62 (2017), pp. 1267-1274. Google Scholar

[20] R. Jasinski, Nature, 201 (1964), pp. 1212-1213. CrossRef Google Scholar

[21] B.N. Achar, K.S. Lokesh, J. Organomet. Chem., 689 (2004), pp. 3357-3361. Google Scholar

[22] R. Venegas, F.J. Recio, J. Riquelme, K. Neira, J.F. Marco, I. Ponce, J.H. Zagal, F.J. Tasca, Mater. Chem. A, 5 (2017), pp. 12054-12059. Google Scholar

[23] S. Mangematin, A.B. Sorokin, J. Porphyrins Phthalocyanines, 05 (2001), pp. 674-680. CrossRef Google Scholar

[24] B.N. Achar, G.M. F, J.A. Parkers, J. Keshavayya, Polyhedron, 6 (1987), pp. 1463-1467. Google Scholar

[25] A. Shaabani, R. Maleki-Moghaddam, A. Maleki, A.H. Rezayan, Dyes Pigments, 74 (2007), pp. 279-282. Google Scholar

[26] A. Katharina, T.S. B., B. Martine N., J. Phys. Chem. A, 107 (2003), pp. 794-803. Google Scholar

[27] S. Cao, N. Han, J. Han, Y. Hu, L. Fan, C. Zhou, R. Guo, ACS Appl. Mater. Inter., 8 (2016), pp. 6040-6050. CrossRef Google Scholar

[28] J. Wang, F. Ciucci, Small, 13 (2017), Article 1604103. CrossRef Google Scholar

[29] S. Zeng, F. Lyu, H. Nie, Y. Zhan, H. Bian, Y. Tian, Z. Li, A. Wang, J. Lu, Y.Y. Li, J. Mater. Chem. A, 5 (2017), pp. 13189-13195. CrossRef Google Scholar

[30] M. Yang, Y. Liu, H. Chen, D. Yang, H. Li, ACS Appl. Mater. Inter., 8 (2016), pp. 28615-28623. CrossRef Google Scholar

[31] Z. Huang, H. Zhou, W. Yang, C. Fu, L. Chen, Y. Kuang, ChemCatChem, 9 (2017), pp. 987-996. CrossRef Google Scholar

  • Fig. 1

    Schematic diagram of the synthesis of FePC-NH2/HCB.

  • Fig. 2

    SEM images of (a) FePC-NH2-800 and (b) FePC-NH2/HCB-800, (c) TEM image of FePC-NH2/HCB-800, (d) HRTEM image of FePC-NH2/HCB-800.

  • Fig. 3

    (a) XRD patterns of FePC-NH2/HCB-800 and FePC-NH2-800, (b) Raman spectra of FePC-NH2/HCB-800 and FePC-NH2-800, (c) high-resolution XPS spectra of N 1s of FePC-NH2/HCB-800.

  • Fig. 4

    (a) Polarization curves for the ORR activity, (b) Tafel plot of FePC-NH2/HCB-800, FePC-NH2-800, HCB-800 and Pt/C at 5 mV s−1. (c) LSV curves of FePC-NH2/HCB-800 catalyst at different rotating speeds at a scan rate of 5 mV s−1. The corresponding K–L plots of FePC-NH2/HCB-800 catalyst at different electrode potentials (inset in Fig. 4c). (d) Electron transfer number, (e) H2O2 yield of FePC-NH2/HCB-800, FePC-NH2-800, HCB-800 and Pt/C measured by RRDE. (f) LSV curves of FePC-NH2/HCB-800 before and after 10,000 potential cycles, and corresponding Tafel plot of them (inset in Fig. 4f).

  • Fig. 5

    (a) HRTEM image of FePC-NH2/HCB-800 treated with 1 M HCl. (b) XRD patterns of FePC-NH2/HCB-800 before and after being treated with 1 M HCl. (c) LSV curves of FePC-NH2/HCB-800, treated with 1 M HCl or 10 mM added KSCN in electrolyte.


Contact and support