logo

Journal of Energy Chemistry, Volume 28 : 54-60(2019) https://doi.org/10.1016/j.jechem.2017.10.021

An imine-linked covalent organic framework as the host material for sulfur loading in lithium–sulfur batteries

More info
  • ReceivedAug 29, 2017
  • AcceptedOct 26, 2017
  • PublishedNov 3, 2017

Abstract


Acknowledgment

The authors are grateful for financial aid from the National Natural Science Foundation of Guangdong Province (Grant No. 2016A030310435) and Youth Scholars Fundation of South China Normal University (Grant No. 15KJ01).


Supplementary data

Appendix

Appendix. Supplementary materials

Download file1.


References

[1] J.B. Goodenough, K.-S. Park, J. Am. Chem. Soc., 135 (2013), pp. 1167-1176. CrossRef Google Scholar

[2] A. Manthiram, Chung S.-H., Zu C., Adv. Mater., 27 (2015), pp. 1980-2006. CrossRef Google Scholar

[3] R. Elazari, G. Salitra, A. Garsuch, A. Panchenko, D. Aurbach, Adv. Mater., 23 (2011), pp. 5641-5644. CrossRef Google Scholar

[4] P.T. Cunningham, S.A. Johnson, E.J. Cairns, J. Electrochem. Soc., 119 (1972), pp. 1448-1450. CrossRef Google Scholar

[5] Y. Mikhaylik, J.R. Akridge, J. Electrochem. Soc., 151 (2004), pp. A1969-A1976. Google Scholar

[6] V.S. Kolosnitsyn, E.V. Karaseva, Russ. J. Electrochem., 44 (2008), pp. 506-509. Google Scholar

[7] Lin Z., Liu Z., N.J. Dudney, Liang C., ACS Nano, 7 (2013), pp. 2829-2833. CrossRef Google Scholar

[8] Fang X., Peng H., Small, 11 (2015), pp. 1488-1511. CrossRef Google Scholar

[9] Zhang X., Cheng X., Zhang Q., J. Energ. Chem., 25 (2016), pp. 967-984. Google Scholar

[10] Peng H.-J., Huang J.-Q., Cheng X.-B., Zhang Q., Adv. Energy Mater., 7 (2017), Article 1700260. CrossRef Google Scholar

[11] Chen S.-R., Zhai Y.-P., Xu G.-L., Y.-X. Jiang, Zhao D.-Y., Li J.-T., Huang L., Sun S.-G., Electrochim. Acta, 56 (2011), pp. 9549-9555. Google Scholar

[12] Xin S., Guo Y.-G., Wan L.-J., Accounts. Chem. Res., 45 (2012), pp. 1759-1769. CrossRef Google Scholar

[13] Liang J., Sun Z.-H., Li F., Cheng H.-M., Energy Storage Mater., 2 (2016), pp. 76-106. Google Scholar

[14] Wu F., Chen J., Chen R., Wu S., Li L., Chen S., Zhao T., J. Phys. Chem. C, 115 (2011), pp. 6057-6063. CrossRef Google Scholar

[15] Li G.-C., Li G.-R., Ye S.-H., Gao X.-P., Adv. Energy Mater, 2 (2012), pp. 1238-1245. CrossRef Google Scholar

[16] Xi K., Cao S., Peng X., C. Ducati, R.V. Kumar, A.K. Cheetham, Chem. Commun. (Camb), 49 (2013), pp. 2192-2194. CrossRef Google Scholar

[17] Liao H., Ding H., Li B., Ai X., Wang C., J. Mater. Chem. A, 2 (2014), pp. 8854-8858. Google Scholar

[18] M. Oschatz, L. Borchardt, K. Pinkert, S. Thieme, M.R. Lohe, C. Hoffmann, M. Benusch, F.M. Wisser, C. Ziegler, L. Giebeler, M.H. Rümmeli, J. Eckert, A. Eychmüller, S. Kaskel, Adv. Energy Mater., 4 (2014), pp. 1300645-1300654. CrossRef Google Scholar

[19] Xiao Z., Yang Z., Nie H., Lu Y., Yang K., Huang S., J. Mater. Chem. A, 2 (2014), pp. 8683-8689. Google Scholar

[20] Liao H., Wang H., Ding H., Meng X., Xu H., Wang B., Ai X., Wang C., J. Mater. Chem. A, 4 (2016), pp. 7416-7421. CrossRef Google Scholar

[21] Yang X., Dong B., Zhang H., Ge R., Gao Y., Zhang H., RSC Adv., 5 (2015), pp. 86137-86143. CrossRef Google Scholar

[22] Z.A. Ghazi, Zhu L., Wang H., A. Naeem, A.M. Khattak, Liang B., N.A. Khan, Wei Z., Li L., Tang Z., Adv. Energy Mater., 6 (2016), Article 1601250. CrossRef Google Scholar

[23] Yoo J., Cho S.J., Jung G.Y., Kim S.H., Choi K.H., Kim J.H., Lee C.K., S.K. Kwak, Lee S.Y., Nano Lett., 16 (2016), pp. 3292-3300. CrossRef Google Scholar

[24] Chen C.Y., Peng H.J., Hou T.Z., Zhai P.Y., Li B.Q., Tang C., Zhu W., Huang J.Q., Zhang Q., Adv. Mater., 29 (2017), pp. 1606802-1606809. CrossRef Google Scholar

[25] B.J. Smith, A.C. Overholts, Hwang N., W.R. Dichtel, Chem. Commun. (Camb), 52 (2016), pp. 3690-3693. CrossRef Google Scholar

  • Fig. 1

    (a) Schematic representation of the synthesis of the TAPB-PDA-COF; (b) FT-IR spectroscopy of TAPB-PDA-COF and TAPB.

  • Fig. 2

    (a) Synthesis and the charge and discharge process of the TAPB-PDA-COF/S composite; (b) Powder X-ray diffraction patterns of TAPB-PDA-COF, element sulfur and TAPB-PDA-COF/S composite; (c) The XPS spectra of TAPB-PDA-COF and sulfur composite powder; (d) N2 absorption/desorption isotherms of the TAPB-PDA-COF and TAPB-PDA-COF/S composite; (e) The pore size distribution curve of the TAPB-PDA-COF.

  • Fig. 3

    (a) SEM image of the TAPB-PDA-COF; (b) SEM image of the TAPB-PDA-COF/S composite; (c) Elemental mapping of TAPB-PDA-COF (C, S, N).

  • Fig. 4

    (a) Discharge and charge profiles of the TAPB-PDA-COF/S@A-B composite at 0.2 A/g rate; (b) Discharge and charge profiles of the TAPB-PDA-COF/S@S-P composite at 0.2 A/g rate; (c) Discharge capacity for the TAPB-PDA-COF/S@A-B and TAPB-PDA-COF/S@S-P composite at different rates; (d) Cycling performance of the TAPB-PDA-COF/S@A-B and TAPB-PDA-COF/S@S-P composite at 0.2 A/g rate; (e) Cycling performance of the TAPB-PDA-COF/S@A-B and TAPB-PDA-COF/S@S-P composite at 0.4 A/g rate; (f) Cycling performance of the TAPB-PDA-COF/S@S-P composite at 2 A/g rate.

  • Fig. 5

    SEM images of charge and discharge after 30 cycles. (a) TAPB-PDA-COF/S@S-P (2 μm) and (b) TAPB-PDA-COF@S-P (500 nm); (c) TAPB-PDA-COF/S@A-B (2 μm) and (d) TAPB-PDA-COF/S@A-B (500 nm).

qqqq

Contact and support