logo

SCIENCE CHINA Physics, Mechanics & Astronomy, Volume 64 , Issue 3 : 237412(2021) https://doi.org/10.1007/s11433-020-1642-2

Charge density wave and weak Kondo effect in a Dirac semimetal CeSbTe

More info
  • ReceivedSep 8, 2020
  • AcceptedNov 23, 2020
  • PublishedJan 25, 2021
PACS numbers

Abstract


Funded by

the National Key R&D Program of the MOST of China(Grant,Nos.,2016YFA0300203,2017YFA0303100)

the National Science Foundation of China(Grant,Nos.,11674280,11774305)

the Science Challenge Program of China. Part of this research used Beam line 03U of the Shanghai Synchrotron Radiation Facility

which is supported by ME2 Project(Contract,No.,11227902)


Acknowledgment

This work was supported by the National Key R&D Program of the Ministry of Science and Technology of China (Grant Nos. 2016YFA0300203, and 2017YFA0303100), the National Science Foundation of China (Grant Nos. 11674280, and 11774305), and the Science Challenge Program of China. Part of this research used Beam line 03U of the Shanghai Synchrotron Radiation Facility, which was supported by ME2 Project (Grant No. 11227902) from the National Natural Science Foundation of China. We also acknowledge Elettra Sincrotrone Trieste for providing access to its synchrotron radiation facilities. Finally, we would like to thank Dr. Cheng-Maw Cheng, Dr. Pei-Yu Chuang, Dr. Zhengtai Liu, Dr. S. Gonzalez and Dr. G. Di Santo for help in the synchrotron ARPES measurements.


References

[1] Kiss T., Yokoya T., Chainani A., Shin S., Hanaguri T., Nohara M., Takagi H.. Nat. Phys., 2007, 3: 720 CrossRef ADS Google Scholar

[2] Chen C. W., Choe J., Morosan E.. Rep. Prog. Phys., 2016, 79: 084505 CrossRef ADS Google Scholar

[3] Chang J., Blackburn E., Holmes A. T., Christensen N. B., Larsen J., Mesot J., Liang R., Bonn D. A., Hardy W. N., Watenphul A., Zimmermann M. V., Forgan E. M., Hayden S. M.. Nat. Phys., 2012, 8: 871 CrossRef ADS arXiv Google Scholar

[4] Nowadnick E. A., Johnston S., Moritz B., Scalettar R. T., Devereaux T. P.. Phys. Rev. Lett., 2012, 109: 246404 CrossRef ADS arXiv Google Scholar

[5] W. Kohn, Phys. Rev. Lett. 19, 8 (1967). Google Scholar

[6] Kogar A., Rak M. S., Vig S., Husain A. A., Flicker F., Joe Y. I., Venema L., MacDougall G. J., Chiang T. C., Fradkin E., van Wezel J., Abbamonte P.. Science, 2017, 358: 1314 CrossRef ADS arXiv Google Scholar

[7] Kidd T. E., Miller T., Chou M. Y., Chiang T. C.. Phys. Rev. Lett., 2002, 88: 226402 CrossRef ADS Google Scholar

[8] Rossnagel K.. J. Phys.-Condens. Matter, 2011, 23: 213001 CrossRef ADS Google Scholar

[9] Zhu X., Cao Y., Zhang J., Plummer E. W., Guo J.. Proc. Natl. Acad. Sci. USA, 2015, 112: 2367 CrossRef ADS arXiv Google Scholar

[10] Shen D. W., Xie B. P., Zhao J. F., Yang L. X., Fang L., Shi J., He R. H., Lu D. H., Wen H. H., Feng D. L.. Phys. Rev. Lett., 2007, 99: 216404 CrossRef ADS arXiv Google Scholar

[11] Huang Y., Sheng D. N., Ting C. S.. Phys. Rev. B, 2019, 99: 195109 CrossRef ADS arXiv Google Scholar

[12] Inamdar M., Ramakrishnan S.. Phys. Rev. B, 2008, 77: 113103 CrossRef ADS Google Scholar

[13] P. Coleman, Heavy fermions: Electrons at the edge of magnetism, in: Handbook of Magnetism and Advanced Magnetic Materials, vol. 1 (Wiley, New York, 2007). Google Scholar

[14] A. C. Hewson, The Kondo Problem to Heavy Fermions (Cambridge University Press, Cambridge, 1997). Google Scholar

[15] Zhang X., Gu Q., Sun H., Luo T., Liu Y., Chen Y., Shao Z., Zhang Z., Li S., Sun Y., Li Y., Li X., Xue S., Ge J., Xing Y., Comin R., Zhu Z., Gao P., Yan B., Feng J., Pan M., Wang J.. Phys. Rev. B, 2020, 102: 035125 CrossRef ADS arXiv Google Scholar

[16] Y. Li, Y. Wu, C. Xu, N. Liu, J. Ma, B. Lv, G. Yao, Y. Liu, H. Bai, X. Yang, L. Qiao, M. Li, L. Li, H. Xing, Y. Huang, J. Ma, M. Shi, C. Cao, Y. Liu, C. Liu, J. Jia, and Z.-A. Xu,. arXiv Google Scholar

[17] Weng H., Dai X., Fang Z.. J. Phys.-Condens. Matter, 2016, 28: 303001 CrossRef ADS arXiv Google Scholar

[18] Liu Z. K., Zhou B., Zhang Y., Wang Z. J., Weng H. M., Prabhakaran D., Mo S. K., Shen Z. X., Fang Z., Dai X., Hussain Z., Chen Y. L.. Science, 2014, 343: 864 CrossRef ADS arXiv Google Scholar

[19] Wang Z., Sun Y., Chen X. Q., Franchini C., Xu G., Weng H., Dai X., Fang Z.. Phys. Rev. B, 2012, 85: 195320 CrossRef ADS Google Scholar

[20] Lv B. Q., Weng H. M., Fu B. B., Wang X. P., Miao H., Ma J., Richard P., Huang X. C., Zhao L. X., Chen G. F., Fang Z., Dai X., Qian T., Ding H.. Phys. Rev. X, 2015, 5: 031013 CrossRef ADS arXiv Google Scholar

[21] Xu S. Y., Liu C., Kushwaha S. K., Sankar R., Krizan J. W., Belopolski I., Neupane M., Bian G., Alidoust N., Chang T. R., Jeng H. T., Huang C. Y., Tsai W. F., Lin H., Shibayev P. P., Chou F. C., Cava R. J., Hasan M. Z.. Science, 2015, 347: 294 CrossRef ADS Google Scholar

[22] Wan X., Turner A. M., Vishwanath A., Savrasov S. Y.. Phys. Rev. B, 2011, 83: 205101 CrossRef ADS arXiv Google Scholar

[23] Weng H., Fang C., Fang Z., Bernevig B. A., Dai X.. Phys. Rev. X, 2015, 5: 011029 CrossRef ADS arXiv Google Scholar

[24] Yang L. X., Liu Z. K., Sun Y., Peng H., Yang H. F., Zhang T., Zhou B., Zhang Y., Guo Y. F., Rahn M., Prabhakaran D., Hussain Z., Mo S. K., Felser C., Yan B., Chen Y. L.. Nat. Phys., 2015, 11: 728 CrossRef ADS Google Scholar

[25] Bian G., Chang T. R., Sankar R., Xu S. Y., Zheng H., Neupert T., Chiu C. K., Huang S. M., Chang G., Belopolski I., Sanchez D. S., Neupane M., Alidoust N., Liu C., Wang B. K., Lee C. C., Jeng H. T., Zhang C., Yuan Z., Jia S., Bansil A., Chou F., Lin H., Hasan M. Z.. Nat. Commun., 2016, 7: 10556 CrossRef ADS Google Scholar

[26] Lv B. Q., Feng Z. L., Xu Q. N., Gao X., Ma J. Z., Kong L. Y., Richard P., Huang Y. B., Strocov V. N., Fang C., Weng H. M., Shi Y. G., Qian T., Ding H.. Nature, 2017, 546: 627 CrossRef ADS Google Scholar

[27] Sun Z. P., Hua C. Q., Liu X. L., Liu Z. T., Ye M., Qiao S., Liu Z. H., Liu J. S., Guo Y. F., Lu Y. H., Shen D. W.. Phys. Rev. B, 2020, 101: 155114 CrossRef ADS Google Scholar

[28] Wang Z., Zhang S. C.. Phys. Rev. B, 2013, 87: 161107 CrossRef ADS arXiv Google Scholar

[29] Roy B., Sau J. D.. Phys. Rev. B, 2015, 92: 125141 CrossRef ADS arXiv Google Scholar

[30] Laubach M., Platt C., Thomale R., Neupert T., Rachel S.. Phys. Rev. B, 2016, 94: 241102 CrossRef ADS arXiv Google Scholar

[31] Zhang R. X., Hutasoit J. A., Sun Y., Yan B., Xu C., Liu C. X.. Phys. Rev. B, 2016, 93: 041108 CrossRef ADS arXiv Google Scholar

[32] Gooth J., Bradlyn B., Honnali S., Schindler C., Kumar N., Noky J., Qi Y., Shekhar C., Sun Y., Wang Z., Bernevig B. A., Felser C.. Nature, 2019, 575: 315 CrossRef ADS arXiv Google Scholar

[33] Schoop L. M., Topp A., Lippmann J., Orlandi F., Müchler L., Vergniory M. G., Sun Y., Rost A. W., Duppel V., Krivenkov M., Sheoran S., Manuel P., Varykhalov A., Yan B., Kremer R. K., Ast C. R., Lotsch B. V.. Sci. Adv., 2018, 4: eaar2317 CrossRef ADS arXiv Google Scholar

[34] Schoop L. M., Ali M. N., Straßer C., Topp A., Varykhalov A., Marchenko D., Duppel V., Parkin S. S. P., Lotsch B. V., Ast C. R.. Nat. Commun., 2016, 7: 11696 CrossRef ADS arXiv Google Scholar

[35] Neupane M., Belopolski I., Hosen M. M., Sanchez D. S., Sankar R., Szlawska M., Xu S. Y., Dimitri K., Dhakal N., Maldonado P., Oppeneer P. M., Kaczorowski D., Chou F., Hasan M. Z., Durakiewicz T.. Phys. Rev. B, 2016, 93: 201104 CrossRef ADS arXiv Google Scholar

[36] Lv B., Chen J., Qiao L., Ma J., Yang X., Li M., Wang M., Tao Q., Xu Z. A.. J. Phys.-Condens. Matter, 2019, 31: 355601 CrossRef ADS Google Scholar

[37] Petaccia L., Vilmercati P., Gorovikov S., Barnaba M., Bianco A., Cocco D., Masciovecchio C., Goldoni A.. Nucl. Instrum. Methods Phys. Res. Sect. A, 2009, 606: 780 CrossRef ADS Google Scholar

[38] Kresse G., Hafner J.. Phys. Rev. B, 1993, 47: 558 CrossRef ADS Google Scholar

[39] Topp A., Vergniory M. G., Krivenkov M., Varykhalov A., Rodolakis F., McChesney J. L., Lotsch B. V., Ast C. R., Schoop L. M.. J. Phys. Chem. Solids, 2019, 128: 296 CrossRef ADS Google Scholar

[40] Brouet V., Yang W. L., Zhou X. J., Hussain Z., Ru N., Shin K. Y., Fisher I. R., Shen Z. X.. Phys. Rev. Lett., 2004, 93: 126405 CrossRef ADS arXiv Google Scholar

[41] Brouet V., Yang W. L., Zhou X. J., Hussain Z., Moore R. G., He R., Lu D. H., Shen Z. X., Laverock J., Dugdale S. B., Ru N., Fisher I. R.. Phys. Rev. B, 2008, 77: 235104 CrossRef ADS arXiv Google Scholar

[42] Gweon G. H., Denlinger J. D., Clack J. A., Allen J. W., Olson C. G., Dimasi E., Aronson M. C., Foran B., Lee S.. Phys. Rev. Lett., 1998, 81: 886 CrossRef ADS Google Scholar

[43] Shin K. Y., Brouet V., Ru N., Shen Z. X., Fisher I. R.. Phys. Rev. B, 2005, 72: 085132 CrossRef ADS Google Scholar

[44] Garcia D. R., Gweon G. H., Zhou S. Y., Graf J., Jozwiak C. M., Jung M. H., Kwon Y. S., Lanzara A.. Phys. Rev. Lett., 2007, 98: 166403 CrossRef ADS arXiv Google Scholar

[45] Kang J. S., Kim D. H., Lee H. J., Hwang J., Lee H. K., Kim H. D., Min B. H., Lee K. E., Kwon Y. S., Kim J. W., Kim K., Kim B. H., Min B. I.. Phys. Rev. B, 2012, 85: 085104 CrossRef ADS Google Scholar

[46] Lee E., Kim D. H., Denlinger J. D., Kim J., Kim K., Min B. I., Min B. H., Kwon Y. S., Kang J. S.. Phys. Rev. B, 2015, 91: 125137 CrossRef ADS Google Scholar

[47] Kang J. S., Olson C. G., Kwon Y. S., Shim J. H., Min B. I.. Phys. Rev. B, 2006, 74: 085115 CrossRef ADS Google Scholar

[48] Lee K. E., Lee C. I., Oh H. J., Jung M. A., Min B. H., Im H. J., Iizuka T., Lee Y. S., Kimura S., Kwon Y. S.. Phys. Rev. B, 2008, 78: 134408 CrossRef ADS Google Scholar

[49] Tomic A., Rak Z., Veazey J. P., Malliakas C. D., Mahanti S. D., Kanatzidis M. G., Tessmer S. H.. Phys. Rev. B, 2009, 79: 085422 CrossRef ADS arXiv Google Scholar

[50] Allen J. W.. J. Phys. Soc. Jpn., 2005, 74: 34 CrossRef ADS arXiv Google Scholar

[51] Kirchner S., Paschen S., Chen Q., Wirth S., Feng D., Thompson J. D., Si Q.. Rev. Mod. Phys., 2020, 92: 011002 CrossRef ADS Google Scholar

[52] Jang S., Kealhofer R., John C., Doyle S., Hong J. S., Shim J. H., Si Q., Erten O., Denlinger J. D., Analytis J. G.. Sci. Adv., 2019, 5: eaat7158 CrossRef ADS Google Scholar

[53] Li P., Wu Z., Wu F., Guo C., Liu Y., Liu H., Sun Z., Shi M., Rodolakis F., McChesney J. L., Cao C., Yuan H., Steglich F., Liu Y.. Phys. Rev. B, 2019, 100: 155110 CrossRef ADS Google Scholar

[54] Sekiyama A., Iwasaki T., Matsuda K., Saitoh Y., Ônuki Y., Suga S.. Nature, 2000, 403: 396 CrossRef ADS Google Scholar

[55] Kang J. S., Olson C. G., Kwon Y. S., Han S. W., Kim K. H., Sekiyama A., Kasai S., Suga S., Min B. I.. J. Phys.-Condens. Matter, 2004, 16: 9163 CrossRef ADS Google Scholar

[56] Hosen M. M., Dhakal G., Dimitri K., Maldonado P., Aperis A., Kabir F., Sims C., Riseborough P., Oppeneer P. M., Kaczorowski D., Durakiewicz T., Neupane M.. Sci. Rep., 2018, 8: 13283 CrossRef ADS arXiv Google Scholar

[57] K. Pandey, R. Basnet, A. Wegner, G. Acharya, M. Nabi, J. Liu, J. Wang, Y. Takahashi, B. Da, and J. Hu,. arXiv Google Scholar

[58] Zhang P., Richard P., Qian T., Xu Y. M., Dai X., Ding H.. Rev. Sci. Instrum., 2011, 82: 043712 CrossRef ADS arXiv Google Scholar

  • Figure 1

    (Color online) (a) Crystal structure of CeSbTe. (b) The corresponding bulk and surface BZ. (c) Momentum integrated EDC of CeSbTe taken with 122 eV photons. (d) The resistivity vs. temperature in the logarithmic scale. The black arrow indicates the AFM transition at 2.62 K.

  • Figure 2

    (Color online) (a) Experimental FS map at 25 K using 130 eV photons. Two high symmetry cuts corresponding to (b) and (c) are indicated by white dashed lines. ARPES spectra taken along the Μ¯Γ¯Μ¯ (b) and Μ¯Χ¯Μ¯ (c) directions. The bands from DFT calculations (red curves) are overlaid on top of the experimental data. The white arrows indicate surface states (SS, SS1 and SS2) as reported before [39]. The ARPES data was taken at 30 K with 110 eV photons. (d) A zoom-in view of the band dispersion along Μ¯Γ¯Μ¯ near EF. (e) MDCs at EF along Μ¯Γ¯Μ¯ under different photon energies. (f) Calculated three-dimensional FS. The inner and outer sheets were labelled by arrows. The color indicates the band velocity.

  • Figure 3

    (Color online) (a) LEED patterns taken at 12 and 338 K with an incident electron energy of 100 eV. Three lattice diffraction peaks were labelled. (b) Upper panel: intensity plot along the horizontal black dashed line in (a), where the lattice peak (δ0) and the CDW peak (δ1) are labelled. Bottom panel: temperature dependence of ∆0/(∆0−∆1), where ∆0 is the distance between the (−1, 0) and (1, 0) lattice peaks, and ∆1 is the distance between two CDW peaks. Its value is close to 5 (the red dashed line) within the experimental uncertainty. (c) Extended FS map with calculated 2D FS (kz=0) overlaid on top (the thick red lines highlight bands within the first BZ). The FS is well nested by the observed CDW ordering vector qCDW (white arrows).

  • Figure 4

    (Color online) (a) High resolution FS map taken at 40 K using 28 eV photons. Representative momentum points are labelled, including A and B points (yellow filled stars) along the outer sheet, C and D points (yellow filled circles) along the inner sheet. (b) Symmetrized EDCs along the outer sheet (left) and the inner sheet (right). The black dashed lines indicate the evolution of the midpoint of the leading edge. (c) Extracted one half of the CDW gap along the inner and outer sheets with error bars.

  • Figure 5

    (Color online) Off-resonant (110 eV) and on-resonant (122 eV) ARPES spectra along Μ¯Χ¯Μ¯ at 25 K and corresponding integrated EDCs within the white dashed rectangle (shown in the right panel).

  • Figure 6

    (Color online) Constant energy maps (a) at several representative energies and their corresponding curvature maps (b), obtained from second derivatives. The Dirac point is labelled by a red arrow. ARPES band dispersion (c) and its second derivative (d) along Γ¯Χ¯Γ¯ direction with the calculated bulk Dirac cone overlaid on top (red dashed curves).

qqqq

Contact and support