logo

SCIENCE CHINA Physics, Mechanics & Astronomy, Volume 64 , Issue 3 : 237511(2021) https://doi.org/10.1007/s11433-020-1635-3

Room-temperature giant magnetotranstance effect in single-phase multiferroics

More info
  • ReceivedAug 29, 2020
  • AcceptedOct 29, 2020
  • PublishedJan 25, 2021
PACS numbers

Abstract


Funded by

the National Natural Science Foundation of China(Grant,Nos.,51725104,11534015)

the National Key Research and Development Program of China(Grant,No.,2016YFA0300700)

and Beijing Natural Science Foundation(Grant,No.,Z180009)


Acknowledgment

This work was supported by the National Natural Science Foundation of China (Grant Nos. 51725104, and 11534015), the National Key Research and Development Program of China (Grant No. 2016YFA0300700), and the Beijing Natural Science Foundation (Grant No. Z180009).


Supplement

Supporting Information

The supporting information is available online at phys.scichina.com and link.springer.com. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.


References

[1] Shang D. S., Chai Y. S., Cao Z. X., Lu J., Sun Y.. Chin. Phys. B, 2015, 24: 068402 CrossRef ADS arXiv Google Scholar

[2] Eerenstein W., Mathur N. D., Scott J. F.. Nature, 2006, 442: 759 CrossRef PubMed ADS Google Scholar

[3] Dong S., Liu J. M., Cheong S. W., Ren Z.. Adv. Phys., 2015, 64: 519 CrossRef ADS arXiv Google Scholar

[4] Fiebig M., Lottermoser T., Meier D., Trassin M.. Nat. Rev. Mater., 2016, 1: 16046 CrossRef ADS Google Scholar

[5] Spaldin N. A., Ramesh R.. Nat. Mater., 2019, 18: 203 CrossRef PubMed Google Scholar

[6] Yang J. J., Strukov D. B., Stewart D. R.. Nat. Nanotech., 2013, 8: 13 CrossRef PubMed ADS Google Scholar

[7] Zidan M. A., Strachan J. P., Lu W. D.. Nat. Electron., 2018, 1: 22 CrossRef Google Scholar

[8] Shen J., Cong J., Chai Y., Shang D., Shen S., Zhai K., Tian Y., Sun Y.. Phys. Rev. Appl., 2016, 6: 021001 CrossRef ADS arXiv Google Scholar

[9] Shen J., Shang D., Chai Y., Wang Y., Cong J., Shen S., Yan L., Wang W., Sun Y.. Phys. Rev. Appl., 2016, 6: 064028 CrossRef ADS arXiv Google Scholar

[10] Shen J. X., Shang D. S., Chai Y. S., Wang S. G., Shen B. G., Sun Y.. Adv. Mater., 2018, 30: 1706717 CrossRef PubMed Google Scholar

[11] Zhai K., Shang D. S., Chai Y. S., Li G., Cai J. W., Shen B. G., Sun Y.. Adv. Funct. Mater., 2018, 28: 1705771 CrossRef Google Scholar

[12] Shen J., Lu P., Shang D., Sun Y.. Phys. Rev. Appl., 2019, 12: 054062 CrossRef ADS Google Scholar

[13] Baibich M. N., Broto J. M., Fert A., F. Nguyen Van Dau , Petroff F., Etienne P., Creuzet G., Friederich A., Chazelas J.. Phys. Rev. Lett., 1988, 61: 2472 CrossRef PubMed ADS Google Scholar

[14] Binasch G., Grünberg P., Saurenbach F., Zinn W.. Phys. Rev. B, 1989, 39: 4828 CrossRef PubMed ADS Google Scholar

[15] von Helmolt R., Wecker J., Holzapfel B., Schultz L., Samwer K.. Phys. Rev. Lett., 1993, 71: 2331 CrossRef PubMed ADS Google Scholar

[16] Jin S., Tiefel T. H., McCormack M., Fastnacht R. A., Ramesh R., Chen L. H.. Science, 1994, 264: 413 CrossRef PubMed ADS Google Scholar

[17] Ali M. N., Xiong J., Flynn S., Tao J., Gibson Q. D., Schoop L. M., Liang T., Haldolaarachchige N., Hirschberger M., Ong N. P., Cava R. J.. Nature, 2014, 514: 205 CrossRef PubMed ADS Google Scholar

[18] Mun E., Ko H., Miller G. J., Samolyuk G. D., Bud’Ko S. L., Canfield P. C.. Phys. Rev. B, 2012, 85: 035135 CrossRef ADS arXiv Google Scholar

[19] Kimura T.. Annu. Rev. Condens. Matter Phys., 2012, 3: 93 CrossRef Google Scholar

[20] Shen S. P., Sun Y.. Sci. China-Phys. Mech. Astron., 2019, 62: 047501 CrossRef ADS Google Scholar

[21] Ishiwata S., Taguchi Y., Murakawa H., Onose Y., Tokura Y.. Science, 2008, 319: 1643 CrossRef ADS Google Scholar

[22] Zhai K., Wu Y., Shen S., Tian W., Cao H., Chai Y., Chakoumakos B. C., Shang D., Yan L., Wang F., Sun Y.. Nat. Commun., 2017, 8: 519 CrossRef PubMed ADS Google Scholar

[23] Kocsis V., Nakajima T., Matsuda M., Kikkawa A., Kaneko Y., Takashima J., Kakurai K., Arima T., Kagawa F., Tokunaga Y., Tokura Y., Taguchi Y.. Nat. Commun., 2019, 10: 1247 CrossRef PubMed ADS arXiv Google Scholar

[24] Shen S., Liu X., Chai Y., Studer A. J., He C., Wang S., Sun Y.. Phys. Rev. B, 2019, 100: 134433 CrossRef ADS Google Scholar

[25] Katsura H., Nagaosa N., Balatsky A. V.. Phys. Rev. Lett., 2005, 95: 057205 CrossRef PubMed ADS arXiv Google Scholar

[26] Sergienko I. A., Dagotto E.. Phys. Rev. B, 2006, 73: 094434 CrossRef ADS arXiv Google Scholar

[27] Chang Y., Zhai K., Chai Y., Shang D., Sun Y.. J. Phys. D-Appl. Phys., 2018, 51: 264002 CrossRef ADS Google Scholar

[28] Nan C. W., Bichurin M. I., Dong S., Viehland D., Srinivasan G.. J. Appl. Phys., 2008, 103: 031101 CrossRef ADS Google Scholar

[29] Shen Y., Gao J., Wang Y., Li J., Viehland D.. J. Appl. Phys., 2014, 115: 094102 CrossRef ADS Google Scholar

  • Figure 1

    (Color online) (a) The diagram of fundamental circuit elements. The relationships between two of four basic circuit variables (voltage, current, charge, and magnetic flux) define four fundamental elements. (b) Schematic illustration of a transtor with the longitudinal (left) and transverse (right) magnetoelectric effect.

  • Figure 2

    (Color online) Magnetic field reversal of electric polarization at 300 K in (a) BaSrCo2Fe11AlO22 and (c) Ba0.9Sr1.1Co2Fe11AlO22. (b), (d) The M-H loop at 300 K for two samples, respectively. The arrows indicate the direction of sweeping magnetic field.

  • Figure 3

    (Color online) Frequency dependence of the ME coefficient αE at room temperature for two hexaferrite samples. The inset shows the measurement configuration. The direction of DC and AC magnetic fields is perpendicular to the electric field, i.e., in the transverse configuration.

  • Figure 4

    (Color online) The ME coefficient as a function of DC bias magnetic field at 300 K for (a) BaSrCo2Fe11AlO22 and (c) Ba0.9Sr1.1Co2Fe11AlO22. The dielectric permittivity as a function of DC bias magnetic field at 300 K for (b) BaSrCo2Fe11AlO22 and (d) Ba0.9Sr1.1Co2Fe11AlO22.

  • Figure 5

    (Color online) The MT ratio defined as MT=[αE(H)−αE(0)]/αE(0)´100% at room temperature for (a) BaSrCo2Fe11AlO22 and (b) Ba0.9Sr1.1Co2-Fe11AlO22. The insets show a zoom-in view in the low field range.

qqqq

Contact and support