logo

SCIENCE CHINA Physics, Mechanics & Astronomy, Volume 64 , Issue 3 : 237301(2021) https://doi.org/10.1007/s11433-020-1634-4

First-principles study of defect control in thin-film solar cell materials

More info
  • ReceivedJul 30, 2020
  • AcceptedOct 29, 2020
  • PublishedJan 15, 2021
PACS numbers

Abstract


Acknowledgment

This work was supported by the National Natural Science Foundation of China (Grant Nos. 61922077, 11874347, 51672023, 11634003, and U1930402), the National Key Research and Development Program of China (Grant Nos. 2016YFB0700700, and 2018YFB2200100), and the Key Research & Development Program of Beijing (Grant No. Z181100005118003). Hui-Xiong Deng was also supported by the Youth Innovation Promotion Association of Chinese Academy of Sciences (Grant No. 2017154). We would like to thank JiHui Yang, WanJian Yin, ShiYou Chen, XinGao Gong, Bing Huang, JingXiu Yang, Peng Zhang, and JingLin Li for their contribution in this work.


References

[1] Blakers A. W., Wang A., Milne A. M., Zhao J., Green M. A.. Appl. Phys. Lett., 1989, 55: 1363 CrossRef ADS Google Scholar

[2] Saga T.. NPG Asia Mater., 2010, 2: 96 CrossRef Google Scholar

[3] Oh J., Yuan H. C., Branz H. M.. Nat. Nanotech., 2012, 7: 743 CrossRef PubMed ADS Google Scholar

[4] Jeon N. J., Noh J. H., Yang W. S., Kim Y. C., Ryu S., Seo J., Seok S. I.. Nature, 2015, 517: 476 CrossRef PubMed ADS Google Scholar

[5] Strümpel C., McCann M., Beaucarne G., Arkhipov V., Slaoui A., Švrček V., del Cañizo C., Tobias I.. Sol. Energy Mater. Sol. Cells, 2007, 91: 238 CrossRef Google Scholar

[6] Li B., Zhang Y., Fu L., Yu T., Zhou S., Zhang L., Yin L.. Nat. Commun., 2018, 9: 1076 CrossRef PubMed ADS Google Scholar

[7] Durose K., Edwards P. R., Halliday D. P.. J. Cryst. Growth, 1999, 197: 733 CrossRef Google Scholar

[8] Bätzner D. L., Romeo A., Zogg H., Wendt R., Tiwari A. N.. Thin Solid Films, 2001, 387: 151 CrossRef Google Scholar

[9] U.S. Department of Energy. The History of Solar. https://www1.eere.energy.gov/solar/pdfs/solar_timeline.pdf. Google Scholar

[10] Shockley W., Queisser H. J.. J. Appl. Phys., 1961, 32: 510 CrossRef ADS Google Scholar

[11] Sites J., Pan J.. Thin Solid Films, 2007, 515: 6099 CrossRef ADS Google Scholar

[12] S. M. Sze, and K. K. Ng, Physics of Semiconductor Devices (Wiley Interscience, Hoboken, 2007). Google Scholar

[13] Ma J., Wei S. H., Gessert T. A., Chin K. K.. Phys. Rev. B, 2011, 83: 245207 CrossRef ADS Google Scholar

[14] Hohenberg P., Kohn W.. Phys. Rev., 1964, 136: B864 CrossRef ADS Google Scholar

[15] Kohn W., Sham L. J.. Phys. Rev., 1965, 140: A1133 CrossRef ADS Google Scholar

[16] Yan Y., Wei S. H.. Phys. Stat. Sol. (b), 2008, 245: 641 CrossRef ADS Google Scholar

[17] Xiao J., Yang K., Guo D., Shen T., Deng H. X., Li S. S., Luo J. W., Wei S. H.. Phys. Rev. B, 2020, 101: 165306 CrossRef ADS arXiv Google Scholar

[18] Van de Walle C. G., Neugebauer J.. J. Appl. Phys., 2004, 95: 3851 CrossRef ADS Google Scholar

[19] Freysoldt C., Grabowski B., Hickel T., Neugebauer J., Kresse G., Janotti A., Van de Walle C. G.. Rev. Mod. Phys., 2014, 86: 253 CrossRef ADS Google Scholar

[20] A. Alkauskas, P. Deak, J. Neugebauer, A. Pasquarello, and C. G. Van de Walle. Overcoming Bipolar Doping Difficulty in Wide Gap Semiconductors. In: Advanced Calculations for Defects in Materials: Electronic Structure Methods (Wiley-VCH, Hoboken, 2011), 13: 213. Google Scholar

[21] Yang J. H., Metzger W. K., Wei S. H.. Appl. Phys. Lett., 2017, 111: 042106 CrossRef ADS arXiv Google Scholar

[22] National Renewable Energy Laboratory. Best Research-Cell Efficiencies. 2020-06-20. https://www.nrel.gov/pv/assets/images/best-research-cell-efficiencies.png. Google Scholar

[23] Yang J. H., Park J. S., Kang J., Metzger W., Barnes T., Wei S. H.. Phys. Rev. B, 2014, 90: 245202 CrossRef ADS Google Scholar

[24] Yang J. H., Yin W. J., Park J. S., Ma J., Wei S. H.. Semicond. Sci. Technol., 2016, 31: 083002 CrossRef ADS Google Scholar

[25] Yang J. H., Park J. S., Kang J., Wei S. H.. Phys. Rev. B, 2015, 91: 075202 CrossRef ADS Google Scholar

[26] Krasikov D., Knizhnik A., Potapkin B., Sommerer T.. Semicond. Sci. Technol., 2013, 28: 125019 CrossRef ADS Google Scholar

[27] Kuciauskas D., Kanevce A., Dippo P., Seyedmohammadi S., Malik R.. IEEE J. Photovolt., 2015, 5: 366 CrossRef Google Scholar

[28] Xiao Y., Wang Z. W., Shi L., Jiang X. W., Li S. S., Wang L. W.. Sci. China-Phys. Mech. Astron., 2020, 63: 277312 CrossRef ADS Google Scholar

[29] Shi L., Wang L. W.. Phys. Rev. Lett., 2012, 109: 245501 CrossRef PubMed ADS Google Scholar

[30] Shi L., Xu K., Wang L. W.. Phys. Rev. B, 2015, 91: 205315 CrossRef ADS arXiv Google Scholar

[31] Yang J. H., Shi L., Wang L. W., Wei S. H.. Sci. Rep., 2016, 6: 21712 CrossRef PubMed ADS Google Scholar

[32] Ma J., Kuciauskas D., Albin D., Bhattacharya R., Reese M., Barnes T., Li J. V., Gessert T., Wei S. H.. Phys. Rev. Lett., 2013, 111: 067402 CrossRef PubMed ADS Google Scholar

[33] Wei S. H., Zhang S. B.. Phys. Rev. B, 2002, 66: 155211 CrossRef ADS Google Scholar

[34] Deng H. X., Luo J. W., Li S. S., Wei S. H.. Phys. Rev. Lett., 2016, 117: 165901 CrossRef PubMed ADS Google Scholar

[35] Ma J., Wei S. H.. Phys. Rev. Lett., 2013, 110: 235901 CrossRef PubMed ADS Google Scholar

[36] Anthony T. C., Fahrenbruch A. L., Peters M. G., Bube R. H.. J. Appl. Phys., 1985, 57: 400 CrossRef ADS Google Scholar

[37] Zandian M., Chen A. C., Edwall D. D., Pasko J. G., Arias J. M.. Appl. Phys. Lett., 1997, 71: 2815 CrossRef ADS Google Scholar

[38] Park J. H., Farrell S., Kodama R., Blissett C., Wang X., Colegrove E., Metzger W. K., Gessert T. A., Sivananthan S.. J. Electron. Mater., 2014, 43: 2998 CrossRef ADS Google Scholar

[39] Hails J. E., Irvine S. J. C., Cole-Hamilton D. J., Giess J., Houlton M. R., Graham A.. J. Electron. Mater., 2008, 37: 1291 CrossRef ADS Google Scholar

[40] Kraft C., Brömel A., Schönherr S., Hädrich M., Reislöhner U., Schley P., Gobsch G., Goldhahn R., Wesch W., Metzner H.. Thin Solid Films, 2011, 519: 7153 CrossRef ADS Google Scholar

[41] Yang J. H., Chen S., Xiang H., Gong X. G., Wei S. H.. Phys. Rev. B, 2011, 83: 235208 CrossRef ADS Google Scholar

[42] Yang J., Wei S. H.. Chin. Phys. B, 2019, 28: 086106 CrossRef ADS Google Scholar

[43] Contreras M. A., Mansfield L. M., Egaas B., Li J., Romero M., Noufi R., Rudiger-Voigt E., Mannstadt W.. Prog. Photovolt-Res. Appl., 2012, 20: 843 CrossRef Google Scholar

[44] Romeo A., Terheggen M., Abou-Ras D., Bätzner D. L., Haug F. J., Kälin M., Rudmann D., Tiwari A. N.. Prog. Photovolt-Res. Appl., 2004, 12: 93 CrossRef Google Scholar

[45] Contreras M. A., Ramanathan K., AbuShama J., Hasoon F., Young D. L., Egaas B., Noufi R.. Prog. Photovolt-Res. Appl., 2005, 13: 209 CrossRef Google Scholar

[46] Reinhard P., Chirila A., Blosch P., Pianezzi F., Nishiwaki S., Buecheler S., Tiwari A. N.. IEEE J. Photovolt., 2013, 3: 572 CrossRef Google Scholar

[47] Nakamura M., Yamaguchi K., Kimoto Y., Yasaki Y., Kato T., Sugimoto H.. IEEE J. Photovolt., 2019, 9: 1863 CrossRef Google Scholar

[48] Huang B., Chen S., Deng H. X., Wang L. W., Contreras M. A., Noufi R., Wei S. H.. IEEE J. Photovolt., 2014, 4: 477 CrossRef Google Scholar

[49] Bhattacharya R. N., Batchelor W., Hiltner J. F., Sites J. R.. Appl. Phys. Lett., 1999, 75: 1431 CrossRef ADS Google Scholar

[50] Johnson P. K., Heath J. T., Cohen J. D., Ramanathan K., Sites J. R.. Prog. Photovolt-Res. Appl., 2005, 13: 579 CrossRef Google Scholar

[51] Bhattacharya R. N., Hiltner J. F., Batchelor W., Contreras M. A., Noufi R. N., Sites J. R.. Thin Solid Films, 2000, 361-362: 396 CrossRef Google Scholar

[52] Wei S. H., Zhang S. B., Zunger A.. Appl. Phys. Lett., 1998, 72: 3199 CrossRef ADS Google Scholar

[53] Zhang S. B., Wei S. H., Zunger A., Katayama-Yoshida H.. Phys. Rev. B, 1998, 57: 9642 CrossRef ADS Google Scholar

[54] Lany S., Zunger A.. Phys. Rev. Lett., 2008, 100: 016401 CrossRef PubMed ADS Google Scholar

[55] Chen S., Gong X. G., Walsh A., Wei S. H.. Phys. Rev. B, 2009, 79: 165211 CrossRef ADS Google Scholar

[56] Chen S., Gong X. G., Walsh A., Wei S. H.. Appl. Phys. Lett., 2009, 94: 041903 CrossRef ADS Google Scholar

[57] Riha S. C., Parkinson B. A., Prieto A. L.. J. Am. Chem. Soc., 2009, 131: 12054 CrossRef PubMed Google Scholar

[58] Weber A., Schmidt S., Abou-Ras D., Schubert-Bischoff P., Denks I., Mainz R., Schock H. W.. Appl. Phys. Lett., 2009, 95: 041904 CrossRef ADS Google Scholar

[59] Katagiri H., Jimbo K., Maw W. S., Oishi K., Yamazaki M., Araki H., Takeuchi A.. Thin Solid Films, 2009, 517: 2455 CrossRef ADS Google Scholar

[60] Miyamoto Y., Tanaka K., Oonuki M., Moritake N., Uchiki H.. Jpn. J. Appl. Phys., 2008, 47: 596 CrossRef ADS Google Scholar

[61] Steinhagen C., Panthani M. G., Akhavan V., Goodfellow B., Koo B., Korgel B. A.. J. Am. Chem. Soc., 2009, 131: 12554 CrossRef PubMed Google Scholar

[62] Chen S., Gong X. G., Walsh A., Wei S. H.. Appl. Phys. Lett., 2010, 96: 021902 CrossRef ADS Google Scholar

[63] Chen S., Walsh A., Gong X. G., Wei S. H.. Adv. Mater., 2013, 25: 1522 CrossRef PubMed Google Scholar

[64] Raulot J. M., Domain C., Guillemoles J. F.. J. Phys. Chem. Solids, 2005, 66: 2019 CrossRef ADS Google Scholar

[65] Nakayama N., Ito K.. Appl. Surf. Sci., 1996, 92: 171 CrossRef Google Scholar

[66] Tanaka T., Nagatomo T., Kawasaki D., Nishio M., Guo Q., Wakahara A., Yoshida A., Ogawa H.. J. Phys. Chem. Solids, 2005, 66: 1978 CrossRef ADS Google Scholar

[67] Kim J., Hiroi H., Todorov T. K., Gunawan O., Kuwahara M., Gokmen T., Nair D., Hopstaken M., Shin B., Lee Y. S., Wang W., Sugimoto H., Mitzi D. B.. Adv. Mater., 2014, 26: 7427 CrossRef PubMed Google Scholar

[68] Tanaka K., Oonuki M., Moritake N., Uchiki H.. Sol. Energy Mater. Sol. Cells, 2009, 93: 583 CrossRef Google Scholar

[69] Ennaoui A., Lux-Steiner M., Weber A., Abou-Ras D., Kötschau I., Schock H. W., Schurr R., Hölzing A., Jost S., Hock R., Voß T., Schulze J., Kirbs A.. Thin Solid Films, 2009, 517: 2511 CrossRef ADS Google Scholar

[70] Yeh L. Y., Cheng K. W.. Thin Solid Films, 2014, 558: 289 CrossRef ADS Google Scholar

[71] Sasamura T., Osaki T., Kameyama T., Shibayama T., Kudo A., Kuwabata S., Torimoto T.. Chem. Lett., 2012, 41: 1009 CrossRef Google Scholar

[72] Ito K., Nakazawa T.. Jpn. J. Appl. Phys., 1988, 27: 2094 CrossRef ADS Google Scholar

[73] Guo J., Zhou W. H., Pei Y. L., Tian Q. W., Kou D. X., Zhou Z. J., Meng Y. N., Wu S. X.. Sol. Energy Mater. Sol. Cells, 2016, 155: 209 CrossRef Google Scholar

[74] Wagner S., Bridenbaugh P. M.. J. Cryst. Growth, 1977, 39: 151 CrossRef Google Scholar

[75] Yuan Z. K., Chen S., Xiang H., Gong X. G., Walsh A., Park J. S., Repins I., Wei S. H.. Adv. Funct. Mater., 2015, 25: 6733 CrossRef Google Scholar

[76] Liu M., Johnston M. B., Snaith H. J.. Nature, 2013, 501: 395 CrossRef PubMed ADS Google Scholar

[77] Burschka J., Pellet N., Moon S. J., Humphry-Baker R., Gao P., Nazeeruddin M. K., Grätzel M.. Nature, 2013, 499: 316 CrossRef PubMed ADS Google Scholar

[78] McGehee M. D.. Nat. Mater., 2014, 13: 845 CrossRef PubMed ADS Google Scholar

[79] Lee M. M., Teuscher J., Miyasaka T., Murakami T. N., Snaith H. J.. Science, 2012, 338: 643 CrossRef PubMed ADS Google Scholar

[80] Chung I., Lee B., He J., Chang R. P. H., Kanatzidis M. G.. Nature, 2012, 485: 486 CrossRef PubMed ADS Google Scholar

[81] Grätzel M.. Nat. Mater., 2014, 13: 838 CrossRef PubMed ADS Google Scholar

[82] Kojima A., Teshima K., Shirai Y., Miyasaka T.. J. Am. Chem. Soc., 2009, 131: 6050 CrossRef PubMed Google Scholar

[83] Yin W. J., Shi T., Yan Y.. Adv. Mater., 2014, 26: 4653 CrossRef PubMed Google Scholar

[84] Yin W. J., Yang J. H., Kang J., Yan Y., Wei S. H.. J. Mater. Chem. A, 2015, 3: 8926 CrossRef Google Scholar

[85] Gholipour S., Ali A. M., Correa-Baena J. P., Turren-Cruz S. H., Tajabadi F., Tress W., Taghavinia N., Grätzel M., Abate A., De Angelis F., Gaggioli C. A., Mosconi E., Hagfeldt A., Saliba M.. Adv. Mater., 2017, 29: 1702005 CrossRef PubMed Google Scholar

[86] Wei S. H., Zunger A.. Phys. Rev. B, 1997, 55: 13605 CrossRef ADS Google Scholar

[87] Yin W. J., Shi T., Yan Y.. Appl. Phys. Lett., 2014, 104: 063903 CrossRef ADS Google Scholar

[88] Walsh A., Payne D. J., Egdell R. G., Watson G. W.. Chem. Soc. Rev., 2011, 40: 4455 CrossRef PubMed Google Scholar

[89] Gao W., Gao X., Abtew T. A., Sun Y. Y., Zhang S., Zhang P.. Phys. Rev. B, 2016, 93: 085202 CrossRef ADS Google Scholar

[90] Wang Q., Shao Y., Xie H., Lyu L., Liu X., Gao Y., Huang J.. Appl. Phys. Lett., 2014, 105: 163508 CrossRef ADS Google Scholar

[91] Noh J. H., Im S. H., Heo J. H., Mandal T. N., Seok S. I.. Nano Lett., 2013, 13: 1764 CrossRef PubMed ADS Google Scholar

[92] Mei A., Li X., Liu L., Ku Z., Liu T., Rong Y., Xu M., Hu M., Chen J., Yang Y., Grätzel M., Han H.. Science, 2014, 345: 295 CrossRef PubMed ADS Google Scholar

[93] Amat A., Mosconi E., Ronca E., Quarti C., Umari P., Nazeeruddin M. K., Grätzel M., De Angelis F.. Nano Lett., 2014, 14: 3608 CrossRef PubMed ADS Google Scholar

[94] Kulkarni S. A., Baikie T., Boix P. P., Yantara N., Mathews N., Mhaisalkar S.. J. Mater. Chem. A, 2014, 2: 9221 CrossRef Google Scholar

[95] Suarez B., Gonzalez-Pedro V., Ripolles T. S., Sanchez R. S., Otero L., Mora-Sero I.. J. Phys. Chem. Lett., 2014, 5: 1628 CrossRef PubMed Google Scholar

[96] Edri E., Kirmayer S., Kulbak M., Hodes G., Cahen D.. J. Phys. Chem. Lett., 2014, 5: 429 CrossRef PubMed Google Scholar

[97] Yin W. J., Yan Y., Wei S. H.. J. Phys. Chem. Lett., 2014, 5: 3625 CrossRef PubMed Google Scholar

[98] Zhao Y., Zhu K.. J. Am. Chem. Soc., 2014, 136: 12241 CrossRef PubMed Google Scholar

[99] Qiu J., Qiu Y., Yan K., Zhong M., Mu C., Yan H., Yang S.. Nanoscale, 2013, 5: 3245 CrossRef PubMed ADS Google Scholar

[100] Wang R., Zhang X., He J., Ma C., Xu L., Sheng P., Huang F.. J. Alloys Compd., 2017, 695: 555 CrossRef Google Scholar

[101] Abdelhady A. L., Saidaminov M. I., Murali B., Adinolfi V., Voznyy O., Katsiev K., Alarousu E., Comin R., Dursun I., Sinatra L., Sargent E. H., Mohammed O. F., Bakr O. M.. J. Phys. Chem. Lett., 2016, 7: 295 CrossRef PubMed Google Scholar

[102] Haque M. A., Li J., Abdelhady A. L., Saidaminov M. I., Baran D., Bakr O. M., Wei S., Wu T.. Adv. Opt. Mater., 2019, 7: 1900865 CrossRef Google Scholar

[103] Li J. L., Yang J., Wu T., Wei S. H.. J. Mater. Chem. C, 2019, 7: 4230 CrossRef Google Scholar

[104] Chadi D. J., Chang K. J.. Phys. Rev. Lett., 1988, 61: 873 CrossRef PubMed ADS Google Scholar

  • Figure 1

    (Color online) Formation energies of intrinsic defects in CdTe under (a) Te-rich and (b) Cd-rich growth conditions, respectively. The simulated Fermi-level, carrier, and defect densities at room temperature (300 K) are shown in (c). Cited from ref. [23]. Copyright 2014 American Physical Society.

  • Figure 2

    (Color online) Fermi-level, carrier, and defect density in CdTe as a function of Cd chemical potential under equilibrium growth temperatures of (a) 800 and (b) 1200 K. Right panels show the same properties after rapid cooling to 300 K, respectively. Cited from ref. [23]. Copyright 2014 American Physical Society.

  • Figure 3

    (Color online) Diagram of two-level recombination process in p-type material. Cited from ref. [31]. Copyright 2016 Springer Nature.

  • Figure 4

    (Color online) Calculated formation energies of Te antisite on Cd of different charge states as a function of Fermi level. Cited from ref. [31]. Copyright 2016 Springer Nature.

  • Figure 5

    (Color online) Formation energies of Na- and Cu-induced defects in CdTe under Cd-rich and Te-rich conditions. Cited from ref. [33]. Copyright 2002 American Physical Society.

  • Figure 6

    (Color online) Diffusion energy curves of (a) group-IA elements and (b) Cu impurities. The crystal structure is displayed in (c). The cyan and green balls indicate Cd and Te, respectively [35]. Copyright 2013 American Physical Society.

  • Figure 7

    (Color online) Calculated formation energies of P and As acceptors and AX centers under (a) Cd-rich and (b) Te-rich conditions, respectively. (c) Schematic of the formation of AX centers caused by lattice distortions. Cited from ref. [24]. Copyright 2016 IOP Publishing.

  • Figure 8

    (Color online) (a) Band gap variation and (b) band alignments with different compositions of the CdSexTe1x alloy. Cited from ref. [42]. Copyright 2019 the Chinese Physical Society.

  • Figure 9

    (Color online) Formation energies of (a) neutral and (b) negative Cu substitutions on Cd site sunder low, high limit, and finite temperature (600 K). Transition energy levels of CuCd under different temperatures as a function of (c) x and (d) Fermi energy. Cited from ref. [42]. Copyright 2019 the Chinese Physical Society.

  • Figure 10

    (Color online) Formation energies of intrinsic defects versus Fermi energy in (a) CIS and (b) CGS. Cited from ref. [48]. Copyright 2014 IEEE.

  • Figure 11

    (Color online) Calculated defect densities, position of Fermi energies, and hole concentrations versus Cu chemical potential in (a) CIS and (b) CGS. Cited from ref. [48]. Copyright 2014 IEEE.

  • Figure 12

    (Color online) Transition levels of MCu and MCu+2VCu in CIGS as a function of Ga content. Cited from ref. [48]. Copyright 2014 IEEE.

  • Figure 13

    (Color online) Calculated chemical potentials of six competitive compounds. The shadowed region indicates CZTS stability. Cited from ref. [62]. Copyright 2010 AIP Publishing.

  • Figure 14

    (Color online) Calculated formation energies of native defects in CZTS. Cited from ref. [63]. Copyright 2013 John Wiley & Sons.

  • Figure 15

    (Color online) Calculated formation energies of native defects in (a) Cu2CdSnS4 and (b) Ag2ZnSnS4. Cited from ref. [75]. Copyright 2015 John Wiley & Sons.

  • Figure 16

    (Color online) Band alignment between Cu2CdSnS4, Cu2ZnSnS4, Ag2ZnSnS4, CuInSe2, CuGaSe2, and CdS. Cited from ref. [75]. Copyright 2015 John Wiley & Sons.

  • Figure 17

    (Color online) Crystal structure of MAPbI3 in the (a) α phase, (b) β phase, (c) γ phase, and (d) δ phase. Cited from ref. [83]. Copyright 2014 John Wiley & Sons, Inc.

  • Figure 18

    (Color online) Partial charge density of (a) CBM and (b) VBM along with the band structure and density of states (DOS) for MAPbI3. Cited from ref. [84]. Copyright 2015 Royal Society of Chemistry.

  • Figure 19

    (Color online) Schematic plot of absorption in (a) first-generation, (b) second-generation, and (c) perovskite solar cells. Cited from ref. [84]. Copyright 2015 Royal Society of Chemistry.

  • Figure 20

    (Color online) (a) Chemical potentials of MAPbI3 under equilibrium, and the formation energies of intrinsic defects at three representative points (b) A, (c) B, and (d) C. Cited from ref. [84]. Copyright 2015 Royal Society of Chemistry.

  • Figure 21

    Transition levels of (a) acceptors and (b) donors in undoped MAPbI3. The zero energy is referenced to the VBM. Cited from ref. [87]. Copyright 2014 AIP Publishing.

  • Figure 22

    (Color online) Formation energies of CsPb(X1xYx)3 (X, Y = I, Br, Cl). The combined effects from strain and Coulomb interactions give rise to the lowest energy at x = 1/3. Cited from ref. [97]. Copyright 2014 American Chemistry Society.

  • Figure 23

    (Color online) Volumes, formation energies, and band gaps of CsPb(X1xYx)3 (X, Y = I, Br, Cl) with various x concentrations. Cited from ref. [97]. Copyright 2014 American Chemistry Society.

  • Figure 24

    (Color online) (a) Local structures of the host, Bipb+, Bipb, and DY in MAPbBr3; (b) calculated formation energies of Bi-induced defects with different charge states. Cited from ref. [103]. Copyright 2019 Royal Society of Chemistry.

  • Table 1   Carrier trapping constants of TeCd at points A, B, and C, respectively. Cited from ref. [31]. Copyright 2016 Springer Nature

    Level

    Bn(cm3 s−1)

    Bp(cm3 s−1)

    A (TeCd)

    2.50×10−7

    B (TeCd)

    1.69×10−10

    1.67×10−7

    C (TeCd)

    2.46×10−6

qqqq

Contact and support