logo

SCIENCE CHINA Physics, Mechanics & Astronomy, Volume 64 , Issue 3 : 237411(2021) https://doi.org/10.1007/s11433-020-1626-3

Field-tuned magnetic structure and phase diagram of the honeycomb magnet YbCl$_3$

More info
  • ReceivedAug 1, 2020
  • AcceptedOct 12, 2020
  • PublishedDec 31, 2020
PACS numbers

Abstract


Acknowledgment

This work was supported by the National Key RrmD Program of the Ministry of Science and Technology of China (Grant No. 2016YFA0300203), the Innovation Program of Shanghai Municipal Education Commission (Grant No. 2017-01-07-00-07-E00018), the Shanghai Municipal Science and Technology Major Project (Grant No. 2019SHZDZX01), and the National Natural Science Foundation of China (Grant No. 11874119). The identification of any commercial product or trade name does not imply endorsement or recommendation by the National Institute of Standards and Technology. The neutron experiment at the Materials and Life Science Experimental Facility of the J-PARC was performed under a user program (Proposal No. 2019B0262).


References

[1] Balents L.. Nature, 2010, 464: 199-208 CrossRef PubMed ADS Google Scholar

[2] Wen X. G.. Phys. Rev. B, 2002, 65: 165113 CrossRef ADS arXiv Google Scholar

[3] Zhou Y., Kanoda K., Ng T. K.. Rev. Mod. Phys., 2017, 89: 025003 CrossRef ADS arXiv Google Scholar

[4] Bramwell S. T.. Science, 2001, 294: 1495-1501 CrossRef PubMed ADS arXiv Google Scholar

[5] Anderson P. W.. Mater. Res. Bull., 1973, 8: 153-160 CrossRef Google Scholar

[6] Han T. H., Helton J. S., Chu S., Nocera D. G., Rodriguez-Rivera J. A., Broholm C., Lee Y. S.. Nature, 2012, 492: 406-410 CrossRef PubMed ADS arXiv Google Scholar

[7] Shen Y., Li Y. D., Wo H., Li Y., Shen S., Pan B., Wang Q., Walker H. C., Steffens P., Boehm M., Hao Y., Quintero-Castro D. L., Harriger L. W., Frontzek M. D., Hao L., Meng S., Zhang Q., Chen G., Zhao J.. Nature, 2016, 540: 559-562 CrossRef PubMed ADS arXiv Google Scholar

[8] Liu W., Zhang Z., Ji J., Liu Y., Li J., Wang X., Lei H., Chen G., Zhang Q.. Chin. Phys. Lett., 2018, 35: 117501 CrossRef ADS arXiv Google Scholar

[9] Kitaev A.. Ann. Phys., 2006, 321: 2-111 CrossRef ADS arXiv Google Scholar

[10] Jackeli G., Khaliullin G.. Phys. Rev. Lett., 2009, 102: 017205 CrossRef PubMed ADS arXiv Google Scholar

[11] Plumb K. W., Clancy J. P., Sandilands L. J., Shankar V. V., Hu Y. F., Burch K. S., Kee H. Y., Kim Y. J.. Phys. Rev. B, 2014, 90: 041112 CrossRef ADS arXiv Google Scholar

[12] Majumder M., Schmidt M., Rosner H., Tsirlin A. A., Yasuoka H., Baenitz M.. Phys. Rev. B, 2015, 91: 180401 CrossRef ADS arXiv Google Scholar

[13] Singh Y., Gegenwart P.. Phys. Rev. B, 2010, 82: 064412 CrossRef ADS Google Scholar

[14] Chaloupka J., Jackeli G., Khaliullin G.. Phys. Rev. Lett., 2010, 105: 027204 CrossRef PubMed ADS arXiv Google Scholar

[15] Singh Y., Manni S., Reuther J., Berlijn T., Thomale R., Ku W., Trebst S., Gegenwart P.. Phys. Rev. Lett., 2012, 108: 127203 CrossRef PubMed ADS arXiv Google Scholar

[16] Hwan Chun S., Kim J. W., Kim J., Zheng H., Stoumpos C. C., Malliakas C. D., Mitchell J. F., Mehlawat K., Singh Y., Choi Y., Gog T., Al-Zein A., Sala M. M., Krisch M., Chaloupka J., Jackeli G., Khaliullin G., Kim B. J.. Nat. Phys., 2015, 11: 462-466 CrossRef ADS Google Scholar

[17] Abramchuk M., Ozsoy-Keskinbora C., Krizan J. W., Metz K. R., Bell D. C., Tafti F.. J. Am. Chem. Soc., 2017, 139: 15371-15376 CrossRef PubMed Google Scholar

[18] Takahashi S. K., Wang J., Arsenault A., Imai T., Abramchuk M., Tafti F., Singer P. M.. Phys. Rev. X, 2019, 9: 031047 CrossRef ADS Google Scholar

[19] Knolle J., Moessner R., Perkins N. B.. Phys. Rev. Lett., 2019, 122: 047202 CrossRef PubMed ADS Google Scholar

[20] Kitagawa K., Takayama T., Matsumoto Y., Kato A., Takano R., Kishimoto Y., Bette S., Dinnebier R., Jackeli G., Takagi H.. Nature, 2018, 554: 341-345 CrossRef PubMed ADS Google Scholar

[21] Sears J. A., Songvilay M., Plumb K. W., Clancy J. P., Qiu Y., Zhao Y., Parshall D., Kim Y. J.. Phys. Rev. B, 2015, 91: 144420 CrossRef ADS arXiv Google Scholar

[22] Johnson R. D., Williams S. C., Haghighirad A. A., Singleton J., Zapf V., Manuel P., Mazin I. I., Li Y., Jeschke H. O., Valentí R., Coldea R.. Phys. Rev. B, 2015, 92: 235119 CrossRef ADS arXiv Google Scholar

[23] Cao H. B., Banerjee A., Yan J. Q., Bridges C. A., Lumsden M. D., Mandrus D. G., Tennant D. A., Chakoumakos B. C., Nagler S. E.. Phys. Rev. B, 2016, 93: 134423 CrossRef ADS arXiv Google Scholar

[24] Liu X., Berlijn T., Yin W. G., Ku W., Tsvelik A., Kim Y. J., Gretarsson H., Singh Y., Gegenwart P., Hill J. P.. Phys. Rev. B, 2011, 83: 220403 CrossRef ADS arXiv Google Scholar

[25] Ye F., Chi S., Cao H., Chakoumakos B. C., Fernandez-Baca J. A., Custelcean R., Qi T. F., Korneta O. B., Cao G.. Phys. Rev. B, 2012, 85: 180403 CrossRef ADS arXiv Google Scholar

[26] Banerjee A., Bridges C. A., Yan J. Q., Aczel A. A., Li L., Stone M. B., Granroth G. E., Lumsden M. D., Yiu Y., Knolle J., Bhattacharjee S., Kovrizhin D. L., Moessner R., Tennant D. A., Mandrus D. G., Nagler S. E.. Nat. Mater, 2016, 15: 733-740 CrossRef PubMed ADS arXiv Google Scholar

[27] Banerjee A., Yan J., Knolle J., Bridges C. A., Stone M. B., Lumsden M. D., Mandrus D. G., Tennant D. A., Moessner R., Nagler S. E.. Science, 2017, 356: 1055-1059 CrossRef PubMed ADS Google Scholar

[28] Baek S. H., Do S. H., Choi K. Y., Kwon Y. S., Wolter A. U. B., Nishimoto S., van den Brink J., Büchner B.. Phys. Rev. Lett., 2017, 119: 037201 CrossRef PubMed ADS arXiv Google Scholar

[29] Kasahara Y., Ohnishi T., Mizukami Y., Tanaka O., Ma S., Sugii K., Kurita N., Tanaka H., Nasu J., Motome Y., Shibauchi T., Matsuda Y.. Nature, 2018, 559: 227-231 CrossRef PubMed ADS arXiv Google Scholar

[30] Hentrich R., Roslova M., Isaeva A., Doert T., Brenig W., Büchner B., Hess C.. Phys. Rev. B, 2019, 99: 085136 CrossRef ADS arXiv Google Scholar

[31] Hirobe D., Sato M., Shiomi Y., Tanaka H., Saitoh E.. Phys. Rev. B, 2017, 95: 241112 CrossRef ADS arXiv Google Scholar

[32] Do S. H., Park S. Y., Yoshitake J., Nasu J., Motome Y., Kwon Y. S., Adroja D. T., Voneshen D. J., Kim K., Jang T. H., Park J. H., Choi K. Y., Ji S.. Nat. Phys., 2017, 13: 1079-1084 CrossRef ADS Google Scholar

[33] Leahy I. A., Pocs C. A., Siegfried P. E., Graf D., Do S. H., Choi K. Y., Normand B., Lee M.. Phys. Rev. Lett., 2017, 118: 187203 CrossRef PubMed ADS arXiv Google Scholar

[34] Sandilands L. J., Tian Y., Plumb K. W., Kim Y. J., Burch K. S.. Phys. Rev. Lett., 2015, 114: 147201 CrossRef PubMed ADS arXiv Google Scholar

[35] Wang Z., Reschke S., Hüvonen D., Do S. H., Choi K. Y., Gensch M., Nagel U., R??m T., Loidl A.. Phys. Rev. Lett., 2017, 119: 227202 CrossRef PubMed ADS arXiv Google Scholar

[36] Wang W., Dong Z. Y., Yu S. L., Li J. X.. Phys. Rev. B, 2017, 96: 115103 CrossRef ADS arXiv Google Scholar

[37] Suzuki T., Suga S.. Phys. Rev. B, 2018, 97: 134424 CrossRef ADS arXiv Google Scholar

[38] Jiang Y. F., Devereaux T. P., Jiang H. C.. Phys. Rev. B, 2019, 100: 165123 CrossRef ADS arXiv Google Scholar

[39] Ran K., Wang J., Wang W., Dong Z. Y., Ren X., Bao S., Li S., Ma Z., Gan Y., Zhang Y., Park J. T., Deng G., Danilkin S., Yu S. L., Li J. X., Wen J.. Phys. Rev. Lett., 2017, 118: 107203 CrossRef PubMed ADS arXiv Google Scholar

[40] Cabra D. C., Lamas C. A., Rosales H. D.. Phys. Rev. B, 2011, 83: 094506 CrossRef ADS arXiv Google Scholar

[41] Chaloupka J., Jackeli G., Khaliullin G.. Phys. Rev. Lett., 2013, 110: 097204 CrossRef PubMed ADS arXiv Google Scholar

[42] Rau J. G., Lee E. K. H., Kee H. Y.. Phys. Rev. Lett., 2014, 112: 077204 CrossRef PubMed ADS arXiv Google Scholar

[43] Z.-X. Luo and G. Chen, “Honeycomb rare-earth magnets with anisotropic exchange interactions,”. Google Scholar

[44] Li F. Y., Li Y. D., Yu Y., Paramekanti A., Chen G.. Phys. Rev. B, 2017, 95: 085132 CrossRef ADS arXiv Google Scholar

[45] J. Xing, H. Cao, E. Emmanouilidou, C. Hu, J. Liu, D. Graf, A. P. Ramirez, G. Chen, and N. Ni, “A rare-earth kitaev material candidate ybcl$_3$,”. Google Scholar

[46] Sala G., Stone M. B., Rai B. K., May A. F., Parker D. S., Halász G. B., Cheng Y. Q., Ehlers G., Garlea V. O., Zhang Q., Lumsden M. D., Christianson A. D.. Phys. Rev. B, 2019, 100: 180406 CrossRef ADS arXiv Google Scholar

[47] G. Sala, M. B. Stone, B. K. Rai, A. F. May, P. Laurell, V. O. Garlea, N. P. Butch, M. D. Lumsden, G. Ehlers, G. Pokharel, D. Mandrus, D. S. Parker, S. Okamoto, G. B. Halász, and A. D. Christianson, “Van hove singularity in the magnon spectrum of the antiferromagnetic quantum honeycomb lattice,”. Google Scholar

[48] Lynn J. W., Chen Y., Chang S., Zhao Y., Chi S., Ratcliff II W., Ueland B. G., Erwin R. W.. J. Res. Natl. Inst. Stand. Technol., 2012, 117: 60 CrossRef PubMed Google Scholar

[49] Nakajima K., Ohira-Kawamura S., Kikuchi T., Nakamura M., Kajimoto R., Inamura Y., Takahashi N., Aizawa K., Suzuya K., Shibata K., Nakatani T., Soyama K., Maruyama R., Tanaka H., Kambara W., Iwahashi T., Itoh Y., Osakabe T., Wakimoto S., Kakurai K., Maekawa F., Harada M., Oikawa K., E. Lechner R., Mezei F., Arai M.. J. Phys. Soc. Jpn., 2011, 80: SB028 CrossRef ADS Google Scholar

[50] Rodríguez-Carvajal J.. Physica B-Condensed Matter, 1993, 192: 55-69 CrossRef Google Scholar

[51] Xing J., Feng E., Liu Y., Emmanouilidou E., Hu C., Liu J., Graf D., Ramirez A. P., Chen G., Cao H., Ni N.. Phys. Rev. B, 2020, 102: 014427 CrossRef ADS Google Scholar

  • Figure 1

    (Color online) (a), (b) Crystal structure of YbCl$_3$. Green and blue spheres represent Yb$^{3+}$ ions and Cl$^-$ anions, respectively; (c) heat capacity of YbCl$_3$ measured under magnetic field perpendicular to the ab-plane; (d) heat capacity of YbCl$_3$ measured under magnetic field parallel to the monoclinic a-axis. Inset of (c), (d) shows zoom-in of low temperature range. Arrows indicate phase transition temperatures at different magnetic fields. (e) DC-susceptibility of YbCl$_3$ measured between 2 K and 300 K. The magnetic fields were applied perpendicular (red dots) and parallel (black dots) to the ab-plane. Inset shows the fitting of Curie-Weiss temperature. (f) AC susceptibility of YbCl$_3$ measured under magnetic field parallel to the monoclinic a-axis.

  • Figure 2

    (Color online) (a) $K$-scan near the (0, 4, 0) Bragg peak position at 80 mK and 1 K measured on SPINS. (b)-(f) Rocking scans measured in (HHL) plane on BT-7 near the indicated Bragg peak positions. Blue and red dots indicate neutron diffraction intensity at 80 mK and 1 K, respectively. Insets show the intensity difference between 80 mK and 1 K. Solid lines were fits using a Gaussian function. (g) Temperature dependence of (–1, –1, 2) magnetic Bragg peak measured at BT-7. Solid line represents a fit using the power-law function I$-$I$_0$$\propto$ (1$-$T/T$_N$)$^{2\beta}$.The vertical line indicating the fitted Néel temperature of 0.601(4) K.h) L-scan measured from the (1, 1, 0) to (1, 1, 1) Bragg peaks at 80 mK. Error bars (in some cases smaller than the symbols) indicate 1 standard deviation.

  • Figure 3

    (Color online) Schematic diagrams of (a) a-axis Néel order of YbCl$_3$ and (b) 120$^\circ$-twinned Néel orders of YbCl$_3$. Red, blue and green arrows demonstrate the magnetic moments for a single twin respectively. (c) Magnetic refinement of YbCl$_3$ for both a-axis Néel and 120$^\circ$-twinned Néel models. Filled circles indicate experimental data in the (HHL) plane at BT-7, while filled stars indicate the (0KL) peaks collected at SPINS. Red and blue open circles represent the calculation for single easy-axis Néel and 120$^\circ$-twinned Néel models, respectively. (d), (e) Weighed R-factor by spin direction angles $\varphi$ and $\psi$ defined in the main text. Black and blue solid lines illustrate the fitting for single easy-axis and 120$^\circ$-twinned models respectively, and the dashed line shows the fitting for the single easy-axis model using only (HHL) magnetic peaks.

  • Figure 4

    (Color online) (a), (b) (1, 3, 0) and (0, 4, 0) Bragg peaks measured at 60 mK on AMATERAS, the magnetic field is applied perpendicular to the $ab$-plane. Blue and orange dots indicate neutron diffraction intensities at 0 and 4 T, respectively. The insets show the subtractions between 0 and 4 T. (c) Integrated neutron diffraction intensity of (0, 2, 0), (0, 4, 0) and (1, 3, 0) Bragg peaks from 0 to 4 T. (d), (e) Field-temperature magnetic phase diagrams of YbCl$_3$. Green and blue dots are determined from the AC susceptibility and heat capacity measurements in the present work (Figure 1(c), (d) and (f)). Red star is determined by our neutron diffraction results (Figure 2(g)). The magnetic field is applied perpendicular to the $ab$-plane (d) and parallel to the easy $a$-axis (e), respectively. Insets of (d) show models of magnetic structure at 0 and 4 T. Error bars indicate 1 standard deviation.

  • Table 1  

    Table 1Magnetic moments of YbCl$_3$ in field perpendicular to the $ab$-plane

    Field (T) M$_a$ ($\mu$$_\text{B}$) M$_\perp$ ($\mu$$_\text{B}$) M$_{\rm~Yb}$ ($\mu$$_\text{B}$)
    $H$ $\perp$ $ab$ Néel FM total
    0 0.86(3) 0 0.86(3)
    2 1.0(2) 0.4(19) 1.1(2)
    3 1.0(2) 0.57(15) 1.2(2)
    4 0.94(16) 0.86(14) 1.6(2)
qqqq

Contact and support