logo

SCIENCE CHINA Physics, Mechanics & Astronomy, Volume 62 , Issue 3 : 030411(2019) https://doi.org/10.1007/s11433-018-9278-1

Constraints on brane inflation after Planck 2015: Impacts of the latest local measurement of the Hubble constant

More info
  • ReceivedMay 20, 2018
  • AcceptedJul 17, 2018
  • PublishedOct 20, 2018
PACS numbers

Abstract


Acknowledgment

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11690021, and 11522540), the Top-Notch Young Talents Program of China, and the Provincial Department of Education of Liaoning (Grant No. L2012087).


References

[1] A. H. Guth, Phys. Rev. D 23, 347 (1980). Google Scholar

[2] Albrecht A., Steinhardt P. J.. Phys. Rev. Lett., 1982, 481220-1223 CrossRef ADS Google Scholar

[3] Linde A. D.. Phys. Lett. B, 1982, 108389-393 CrossRef ADS Google Scholar

[4] Dvali G., Tye S. H. H.. Phys. Lett. B, 1999, 45072-82 CrossRef ADS Google Scholar

[5] S.-H. Henry Tye, Brane Inflation: String Theory Viewed from the Cosmos (Springer-Verlag Berlin Heidelberg, 2008), p. 949. Google Scholar

[6] J. Liu, Y. F. Cai, and H. Li,. arXiv Google Scholar

[7] Li N., Zhang X.. Phys. Rev. D, 2013, 88023508 CrossRef ADS arXiv Google Scholar

[8] Tsujikawa S., Ohashi J., Kuroyanagi S., De Felice A.. Phys. Rev. D, 2013, 88023529 CrossRef ADS arXiv Google Scholar

[9] A. Linde,. arXiv Google Scholar

[10] Xia J. Q., Cai Y. F., Li H., Zhang X.. Phys. Rev. Lett., 2014, 112251301 CrossRef PubMed ADS arXiv Google Scholar

[11] Liu Z. G., Li H., Piao Y. S.. Phys. Rev. D, 2014, 90083521 CrossRef ADS arXiv Google Scholar

[12] Wan Y., Li S., Li M., Qiu T., Cai Y., Zhang X.. Phys. Rev. D, 2014, 90023537 CrossRef ADS arXiv Google Scholar

[13] Cai R. G., Guo Z. K., Wang S. J.. Phys. Rev. D, 2015, 92063506 CrossRef ADS arXiv Google Scholar

[14] Huang Q. G.. Phys. Rev. D, 2015, 91123532 CrossRef ADS arXiv Google Scholar

[15] Cai R. G., Guo Z. K., Wang S. J.. Phys. Rev. D, 2015, 92063514 CrossRef ADS arXiv Google Scholar

[16] Huang Q. G., Wang S., Zhao W.. J. Cosmol. Astropart. Phys., 2015, 2015035-035 CrossRef ADS arXiv Google Scholar

[17] Huang Q. G., Wang K., Wang S.. Phys. Rev. D, 2016, 93103516 CrossRef ADS arXiv Google Scholar

[18] Li H. G., Cai Y., Piao Y. S.. Eur. Phys. J. C, 2016, 76699 CrossRef ADS arXiv Google Scholar

[19] Tram T., Vallance R., Vennin V.. J. Cosmol. Astropart. Phys., 2017, 2017046-046 CrossRef ADS arXiv Google Scholar

[20] Xu Y., Hamann J., Chen X.. Phys. Rev. D, 2016, 94123518 CrossRef ADS arXiv Google Scholar

[21] Cai Y. F., Gong J. O., Wang D. G., Wang Z.. J. Cosmol. Astropart. Phys., 2016, 2016017-017 CrossRef ADS arXiv Google Scholar

[22] Gerbino M., Freese K., Vagnozzi S., Lattanzi M., Mena O., Giusarma E., Ho S.. Phys. Rev. D, 2017, 95043512 CrossRef ADS arXiv Google Scholar

[23] Zhang X.. Sci. China-Phys. Mech. Astron., 2017, 60060421 CrossRef ADS arXiv Google Scholar

[24] Guo R. Y., Zhang X.. Eur. Phys. J. C, 2017, 77882 CrossRef ADS arXiv Google Scholar

[25] Obied G., Dvorkin C., Heinrich C., Hu W., Miranda V.. Phys. Rev. D, 2017, 96083526 CrossRef ADS arXiv Google Scholar

[26] S. Ni, H. Li, T. Qiu, W. Zheng, and X. Zhang,. arXiv Google Scholar

[27] Santos M. A., Benetti M., Alcaniz J. S., Brito F. A., Silva R.. J. Cosmol. Astropart. Phys., 2018, 2018023-023 CrossRef ADS arXiv Google Scholar

[28] Bean R., Chen X., Peiris H., Xu J.. Phys. Rev. D, 2008, 77023527 CrossRef ADS arXiv Google Scholar

[29] Quevedo F.. Class. Quantum Grav., 2002, 195721-5779 CrossRef Google Scholar

[30] Kachru S., Kallosh R., Linde A., Maldacena J., McAllister L., Trivedi S. P.. J. Cosmol. Astropart. Phys., 2003, 2003013-013 CrossRef ADS Google Scholar

[31] Firouzjahi H., Tye S. H. H.. J. Cosmol. Astropart. Phys., 2005, 2005009-009 CrossRef ADS Google Scholar

[32] Huang Q. G., Li M., She J. H.. J. Cosmol. Astropart. Phys., 2006, 2006010-010 CrossRef ADS Google Scholar

[33] Huang Q. G.. Phys. Rev. D, 2006, 74063513 CrossRef ADS Google Scholar

[34] Zhang X.. J. Cosmol. Astropart. Phys., 2006, 2006002-002 CrossRef ADS Google Scholar

[35] Baumann D., McAllister L.. Phys. Rev. D, 2007, 75123508 CrossRef ADS Google Scholar

[36] Baumann D., Dymarsky A., Klebanov I. R., McAllister L.. J. Cosmol. Astropart. Phys., 2008, 2008024 CrossRef ADS arXiv Google Scholar

[37] Baumann D., Dymarsky A., Kachru S., Klebanov I. R., McAllister L.. J. High Energy Phys., 2009, 2009093-093 CrossRef ADS arXiv Google Scholar

[38] Ma Y. Z., Zhang X.. J. Cosmol. Astropart. Phys., 2009, 2009006-006 CrossRef ADS arXiv Google Scholar

[39] Ma Y. Z., Huang Q. G., Zhang X.. Phys. Rev. D, 2013, 87103516 CrossRef ADS arXiv Google Scholar

[40] Gangopadhyay M. R., Mathews G. J.. J. Cosmol. Astropart. Phys., 2018, 2018028-028 CrossRef ADS arXiv Google Scholar

[41] Ade P. A. R.. (Planck Collaboration). Astron. Astrophys., 2016, 594A13 CrossRef ADS arXiv Google Scholar

[42] Ade P. A. R.. (Planck Collaboration). Phys. Rev. Lett., 2016, 116031302 CrossRef PubMed ADS arXiv Google Scholar

[43] Beutler F., Blake C., Colless M., Jones D. H., Staveley-Smith L., Campbell L., Parker Q., Saunders W., Watson F.. Mon. Not. R. Astron. Soc., 2011, 4163017-3032 CrossRef ADS arXiv Google Scholar

[44] Ross A. J., Samushia L., Howlett C., Percival W. J., Burden A., Manera M.. Mon. Not. R. Astron. Soc., 2015, 449835-847 CrossRef ADS arXiv Google Scholar

[45] Gil-Marín H., Percival W. J., Cuesta A. J., Brownstein J. R., Chuang C. H., Ho S., Kitaura F. S., Maraston C., Prada F., Rodríguez-Torres S., Ross A. J., Schlegel D. J., Schneider D. P., Thomas D., Tinker J. L., Tojeiro R., Vargas Maga?a M., Zhao G. B.. Mon. Not. R. Astron. Soc., 2016, 4604210-4219 CrossRef ADS arXiv Google Scholar

[46] Riess A. G., Macri L. M., Hoffmann S. L., Scolnic D., Casertano S., Filippenko A. V., Tucker B. E., Reid M. J., Jones D. O., Silverman J. M., Chornock R., Challis P., Yuan W., Brown P. J., Foley R. J.. Astrophys. J., 2016, 82656 CrossRef ADS arXiv Google Scholar

[47] Zhang J. F., Li Y. H., Zhang X.. Phys. Lett. B, 2015, 740359-363 CrossRef ADS arXiv Google Scholar

[48] Zhang J. F., Geng J. J., Zhang X.. J. Cosmol. Astropart. Phys., 2014, 2014044-044 CrossRef ADS arXiv Google Scholar

[49] Valentino E. D., Bouchet F. R.. J. Cosmol. Astropart. Phys., 2016, 2016011-011 CrossRef ADS arXiv Google Scholar

[50] Benetti M., Graef L. L., Alcaniz J. S.. J. Cosmol. Astropart. Phys., 2017, 2017003-003 CrossRef ADS arXiv Google Scholar

[51] Li M., Li X. D., Ma Y. Z., Zhang X., Zhang Z.. J. Cosmol. Astropart. Phys., 2013, 2013021-021 CrossRef ADS arXiv Google Scholar

[52] Huang Q. G., Wang K.. Eur. Phys. J. C, 2016, 76506 CrossRef ADS arXiv Google Scholar

[53] Di Valentino E., Melchiorri A., Linder E. V., Silk J.. Phys. Rev. D, 2017, 96023523 CrossRef ADS arXiv Google Scholar

[54] Di Valentino E., Melchiorri A., Mena O.. Phys. Rev. D, 2017, 96043503 CrossRef ADS arXiv Google Scholar

[55] G. Barenboim, and W. H. Kinney,. arXiv Google Scholar

[56] Zhang J. F., Li Y. H., Zhang X.. Eur. Phys. J. C, 2014, 742954 CrossRef ADS arXiv Google Scholar

[57] Li Y. C., Wu F. Q., Lu Y. J., Chen X. L.. Phys. Lett. B, 2014, 738206-212 CrossRef ADS arXiv Google Scholar

[58] Vagnozzi S., Giusarma E., Mena O., Freese K., Gerbino M., Ho S., Lattanzi M.. Phys. Rev. D, 2017, 96123503 CrossRef ADS arXiv Google Scholar

[59] Feng L., Zhang J. F., Zhang X.. Eur. Phys. J. C, 2017, 77418 CrossRef ADS arXiv Google Scholar

[60] Zhao M. M., He D. Z., Zhang J. F., Zhang X.. Phys. Rev. D, 2017, 96043520 CrossRef ADS arXiv Google Scholar

[61] Hamaguchi K., Nakayama K., Tang Y.. Phys. Lett. B, 2017, 772415-419 CrossRef ADS arXiv Google Scholar

[62] Feng L., Zhang J. F., Zhang X.. Sci. China-Phys. Mech. Astron., 2018, 61050411 CrossRef ADS arXiv Google Scholar

[63] Zhao M. M., Zhang J. F., Zhang X.. Phys. Lett. B, 2018, 779473-478 CrossRef ADS arXiv Google Scholar

[64] Ade P. A. R.. (Planck Collaboration). Astron. Astrophys., 2014, 571A22 CrossRef ADS arXiv Google Scholar

[65] Chen X.. Phys. Rev. D, 2005, 71063506 CrossRef ADS Google Scholar

[66] Chen X.. J. High Energy Phys., 2005, 2005045-045 CrossRef ADS Google Scholar

[67] Giddings S. B., Kachru S., Polchinski J.. Phys. Rev. D, 2002, 66106006 CrossRef ADS Google Scholar

[68] Cheng C., Huang Q. G., Li X. D., Ma Y. Z.. Phys. Rev. D, 2012, 86123512 CrossRef ADS arXiv Google Scholar

[69] Maldacena J.. J. High Energy Phys., 2003, 2003013-013 CrossRef ADS Google Scholar

[70] Acquaviva V., Bartolo N., Matarrese S., Riotto A.. Nucl. Phys. B, 2003, 667119-148 CrossRef ADS Google Scholar

[71] Chen X., Huang M., Kachru S., Shiu G.. J. Cosmol. Astropart. Phys., 2007, 2007002-002 CrossRef ADS Google Scholar

[72] Seery D., Lidsey J. E.. J. Cosmol. Astropart. Phys., 2005, 2005003-003 CrossRef ADS Google Scholar

[73] Senatore L., Smith K. M., Zaldarriaga M.. J. Cosmol. Astropart. Phys., 2010, 2010028-028 CrossRef ADS arXiv Google Scholar

[74] Chen X.. Phys. Rev. D, 2005, 72123518 CrossRef ADS Google Scholar

[75] Ade P. A. R.. (Planck Collaboration). Astron. Astrophys., 2016, 594A20 CrossRef ADS arXiv Google Scholar

[76] Renaux-Petel S.. Comptes Rendus Physique, 2015, 16969-985 CrossRef ADS arXiv Google Scholar

[77] Lewis A., Bridle S.. Phys. Rev. D, 2002, 66103511 CrossRef ADS Google Scholar

[78] Ade P. A. R.. (Planck Collaboration). Astron. Astrophys., 2016, 594A17 CrossRef ADS arXiv Google Scholar

  • Figure 1

    (Color online) Constraints ($1\sigma$ and $2\sigma$) on the $\Lambda$CDM+$r$+ $\text{d}n_{\rm~s}/\text{d}\ln~k$+$N_{\rm~eff}$ model in the $n_{\rm~s}$-$r$ (a) and $n_{\rm~s}$-${\rm~d}n_{\rm~s}/{\rm~d}\ln~k$ (b) plane by using the Planck+BK+BAO and Planck+BK+BAO+$H_{0}$ data, compared to the theoretical predictions of the toy model.

  • Figure 2

    (Color online) Constraints ($1\sigma$ and $2\sigma$) on the $\Lambda$CDM+$r$+ ${\rm~d}n_{\rm~s}/{\rm~d}\ln~k$+$N_{\rm~eff}$ model in the $n_{\rm~s}$-$r$ (a) and $n_{\rm~s}$-$\text{d}n_{\rm~s}/\text{d}\ln~k$ (b) plane by using the Planck+BK+BAO and Planck+BK+BAO+$H_{0}$ data, compared to the theoretical predictions of the KKLMMT model.

  • Figure 3

    (Color online) Constraints (1$\sigma$ and 2$\sigma$) on the $\Lambda$CDM +$r$+$\text{d}n_{\rm~s}/\text{d}\ln~k$+$N_{\rm~eff}$ model in the $n_{\rm~s}$-$\text{d}n_{\rm~s}/\text{d}\ln~k$ plane by using the Planck+BK+BAO and Planck+BK+BAO+$H_{0}$ data, compared to the theoretical predictions of the IR DBI model.

  • Figure 4

    (Color online) Equilateral $f_{NL}$ predictions for different $\beta$ values in the IR DBI model. Here we only plot the best-fit value and the lower bound ($1\sigma$) for $f_{NL}^{\rm~eq}$ as dashed straight lines.

qqqq

Contact and support