logo

SCIENCE CHINA Physics, Mechanics & Astronomy, Volume 60 , Issue 5 : 057711(2017) https://doi.org/10.1007/s11433-017-9018-8

Oxygen vacancies effects on phase diagram of epitaxial La1xSrxMnO3 thin films

More info
  • ReceivedJan 13, 2017
  • AcceptedMar 3, 2017
  • PublishedMar 22, 2017
PACS numbers

Abstract


Funded by

National Key Basic Research Program of China(2014CB921001,2013CB328706)

Key Research Program of Frontier Sciences of the Chinese Academy of Sciences(QYZDJ-SSW-SLH020)

Strategic Priority Research Program (B) of the Chinese Academy of Sciences(XDB07030200)

National Natural Science Foundation of China(11574365,11474349,11674385,11404380)


Acknowledgment

This work was supported by the National Key Basic Research Program of China (Grant Nos. 2014CB921001, and 2013CB328706), the Key Research Program of Frontier Sciences of the Chinese Academy of Sciences (Grant No. QYZDJ-SSW-SLH020), the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No. XDB07030200), and the National Natural Science Foundation of China (Grant Nos. 11574365, 11474349, 11674385, and 11404380). The authors would like to thank the BL14B1 beam line of the Shanghai Synchrotron Radiation Facility and the beam lines of the Beijing Synchrotron Radiation Facility for technical support.


References

[1] Mandal P., Das S.. Phys. Rev. B, 1997, 56: 15073 CrossRef ADS Google Scholar

[2] Urushibara A., Moritomo Y., Arima T., Asamitsu A., Kido G., Tokura Y.. Phys. Rev. B, 1995, 51: 14103 CrossRef ADS Google Scholar

[3] Shang T. T., Liu X. Y., Gu L.. Sci. China-Phys. Mech. Astron., 2016, 59: 697001 CrossRef ADS Google Scholar

[4] Chen X. X., Liu G. Z., Zhu X., Qiu J., Yao J. L., Zhao M., Jiang Y. C., Zhao R., Gao J.. Sci. China-Phys. Mech. Astron., 2016, 59: 677521 CrossRef ADS Google Scholar

[5] Elovaara T., Huhtinen H., Majumdar S., Paturi P.. J. Phys.-Condens. Matter, 2012, 24: 216002 CrossRef PubMed ADS Google Scholar

[6] Asamitsu A., Tomioka Y., Kuwahara H., Tokura Y.. Nature, 1997, 388: 50 CrossRef ADS Google Scholar

[7] Van Aken B. B., Palstra T. T. M., Filippetti A., Spaldin N. A.. Nat. Mater., 2004, 3: 164 CrossRef PubMed ADS Google Scholar

[8] Tian X. Z., Wang L. F., Li X. M., Wei J. K., Yang S. Z., Xu Z., Wang W. L., Bai X. D.. Sci. China-Phys. Mech. Astron., 2013, 56: 2361 CrossRef ADS Google Scholar

[9] Miyano K., Tanaka T., Tomioka Y., Tokura Y.. Phys. Rev. Lett., 1997, 78: 4257 CrossRef ADS Google Scholar

[10] Park J. H., Vescovo E., Kim H. J., Kwon C., Ramesh R., Venkatesan T.. Nature, 1998, 392: 794 CrossRef ADS Google Scholar

[11] Israel C., Calderón M. J., Mathur N. D.. Mater. Today, 2007, 10: 24 CrossRef Google Scholar

[12] Haghiri-Gosnet A. M., Renard J. P.. J. Phys. D-Appl. Phys., 2003, 36: R127 CrossRef Google Scholar

[13] Asamitsu A., Moritomo Y., Kumai R., Tomioka Y., Tokura Y.. Phys. Rev. B, 1996, 54: 1716 CrossRef ADS Google Scholar

[14] Hemberger J., Krimmel A., Kurz T., Krug Von Nidda H. A., Ivanov V. Y., Mukhin A. A., Balbashov A. M., Loidl A.. Phys. Rev. B, 2002, 66: 094410 CrossRef ADS Google Scholar

[15] Ohtomo A., Hwang H. Y.. Nature, 2006, 441: 120 CrossRef ADS Google Scholar

[16] Yamada H., Kawasaki M., Lottermoser T., Arima T., Tokura Y.. Appl. Phys. Lett., 2006, 89: 052506 CrossRef ADS Google Scholar

[17] Bhattacharya A., May S. J., Te Velthuis S. G. E., Warusawithana M., Zhai X., Jiang B., Zuo J. M., Fitzsimmons M. R., Bader S. D., Eckstein J. N.. Phys. Rev. Lett., 2008, 100: 257203 CrossRef PubMed ADS arXiv Google Scholar

[18] Eckstein J. N.. Nat. Mater., 2007, 6: 473 CrossRef PubMed ADS Google Scholar

[19] Muller D. A., Nakagawa N., Ohtomo A., Grazul J. L., Hwang H. Y.. Nature, 2004, 430: 657 CrossRef PubMed ADS Google Scholar

[20] Yang F., Jin K. J., Lu H. B., He M., Wang C., Wen J., Yang G. Z.. Sci. China-Phys. Mech. Astron., 2010, 53: 852 CrossRef ADS Google Scholar

[21] Xu Z., Jin K., Gu L., Jin Y., Ge C., Wang C., Guo H., Lu H., Zhao R., Yang G.. Small, 2012, 8: 1279 CrossRef PubMed Google Scholar

[22] Gao P., Kang Z., Fu W., Wang W., Bai X., Wang E.. J. Am. Chem. Soc., 2010, 132: 4197 CrossRef PubMed Google Scholar

[23] Rajeswari M., Shreekala R., Goyal A., Lofland S. E., Bhagat S. M., Ghosh K., Sharma R. P., Greene R. L., Ramesh R., Venkatesan T., Boettcher T.. Appl. Phys. Lett., 1998, 73: 2672 CrossRef ADS Google Scholar

[24] Picozzi S., Ma C., Yang Z., Bertacco R., Cantoni M., Cattoni A., Petti D., Brivio S., Ciccacci F.. Phys. Rev. B, 2007, 75: 094418 CrossRef ADS Google Scholar

[25] Zhao R., Jin K., Xu Z., Guo H., Wang L., Ge C., Lu H., Yang G.. Appl. Phys. Lett., 2013, 102: 122402 CrossRef ADS Google Scholar

[26] Li Z., Bosman M., Yang Z., Ren P., Wang L., Cao L., Yu X., Ke C., Breese M. B. H., Rusydi A., Zhu W., Dong Z., Foo Y. L.. Adv. Funct. Mater., 2012, 22: 4312 CrossRef Google Scholar

[27] Maezono R., Ishihara S., Nagaosa N.. Phys. Rev. B, 1998, 58: 11583 CrossRef ADS Google Scholar

[28] Vaz C. A. F., Moyer J. A., Arena D. A., Ahn C. H., Henrich V. E.. Phys. Rev. B, 2014, 90: 024414 CrossRef ADS Google Scholar

[29] Yin X., Majidi M. A., Chi X., Ren P., You L., Palina N., Yu X., Diao C., Schmidt D., Wang B., Yang P., Breese M. B. H., Wang J., Rusydi A.. NPG Asia Mater., 2015, 7: e196 CrossRef Google Scholar

[30] Markovich V., Jung G., Yuzhelevskii Y., Gorodetsky G., Hu F. X., Gao J.. Phys. Rev. B, 2007, 75: 104419 CrossRef ADS Google Scholar

[31] E. Dagotto, Nanoscale phase separation and colossal magnetoresistance (Springer, New York, 2003). Google Scholar

[32] Guo H., Wang J., He X., Yang Z., Zhang Q., Jin K., Ge C., Zhao R., Gu L., Feng Y., Zhou W., Li X., Wan Q., He M., Hong C., Guo Z., Wang C., Lu H., Ibrahim K., Meng S., Yang H., Yang G.. Adv. Mater. Interfaces, 2016, 3: 1500753 CrossRef Google Scholar

  • Figure 1

    (Color online) SXRD θ-2θ scan curves of the La1–xSrxMnO3 thin films grown under oxygen pressures of 10 Pa (red) and 40 Pa (blue) with different Sr doping concentrations: (a) x=0.1; (b) x=0.2; (c) x=0.33; (d) x=0.4; (e) x=0.5. (f) The doping-dependent c-axis lattice constants deduced from the SXRD patterns.

  • Figure 2

    (Color online) Magnetizations versus temperature with an applied magnetic field of 100 Oe (zero-field cooling (ZFC) and field cooling (FC)) for the La1xSrxMnO3 thin films with different Sr dopings: (a) x=0.1; (b) x=0.2; (c) x=0.33; (d) x=0.4; (e) x=0.5. (f) The doping-dependent magnetization deduced from magnetizations versus temperature.

  • Figure 3

    (Color online) The magnetic hysteresis loops M(H) measured between –1 and 1 T fields at 10 K for different Sr concentrations of the La1–xSrxMnO3 thin films grown under LP (a) and HP (b); (c) the doping-dependent coercive fields (HC) deduced from the magnetic hysteresis loops; (d) the doping-dependent saturation magnetizations (MS) deduced from the magnetic hysteresis loops.

  • Figure 4

    (Color online) Temperature dependence of the resistance of LSMO thin films with different Sr doping concentrations under LP (a)-(e) and HP (a′)-(e′), respectively. The resistance was measured at 0 (black), 3 (red), and 5 T (blue), respectively.

  • Figure 5

    (Color online) Temperature dependence of the magnetoresistance of LSMO thin films with different Sr doping concentrations under LP (a)-(e) and HP (a′)-(e′). The magnetoresistance ratio is defined as 100%×[R(0)–R(H)]/R(H).

qqqq

Contact and support