logo

SCIENCE CHINA Physics, Mechanics & Astronomy, Volume 59 , Issue 1 : 614704(2016) https://doi.org/10.1007/s11433-015-5711-6

Numerical simulations of instabilities in the implosion process of inertial confined fusion in 2D cylindrical coordinates

More info
  • ReceivedFeb 6, 2015
  • AcceptedJun 2, 2015
  • PublishedDec 8, 2015
PACS numbers

Abstract


Funded by

National Natural Science Foundation of China(11371065)

National Natural Science Foundation of China(11126134)

National Natural Science Foundation of China(11401033)

National Natural Science Foundation of China(91130002)

National Natural Science Foundation of China(91330205)

China academy of Engineering Physics Project(2012A0202010)

China academy of Engineering Physics Project(2015B0202035)

National high Technology Research and Development Program of China(2012AA01A303)


Acknowledgment

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11371065, 11126134, 11401033, 91130002 and 91330205), the China academy of Engineering Physics Project (Grant Nos. 2012A0202010 and 2015B0202035), the National high Technology Research and Development Program of China (Grant No. 2012AA01A303), the Foundation of Science and Technology Computation Physics laboratory, and the National Hi-Tech Inertial Confinement Fusion Committee of china. We gratefully acknowledge the assistance of Rong Yang and ShuangGui Li in the code of the radiation multi-group diffusion solver, Prof. Juan Cheng in the code of the sutherland-Hodgman cutting algorithm, and Prof. PeiJun Gu in the helpful discussion of the closure model in the mixed cell. And we also thank Prof. wenHua Ye for helpful conversations.


References

[1] Taylor G.. Proc. Roy. Soc. A, 1950, 201: 192 CrossRef Google Scholar

[2] Olson D., Jacobs J.. Phys. Fluids, 2009, 21: 034103 CrossRef Google Scholar

[3] Richtmyer R.. Commun. Pure Appl. Math., 1960, 13: 297 CrossRef Google Scholar

[4] Meshkov E.. Fluid Dyn., 1969, 4: 101 Google Scholar

[5] Lindl J.. Phys. Plasmas., 1995, 2: 3933 CrossRef Google Scholar

[6] Lindl J., Amendt P., Berger R., Glendining S. G., Glenzer S. H., Haan S. W., Kauffman K. L., Landen O. L., Suter L. J.. Phys. Plasmas., 2004, 11: 339 CrossRef Google Scholar

[7] Neumann J. Von, Richtmyer R.. J. Appl. Phys., 1950, 21: 232 CrossRef Google Scholar

[8] Schulz W.. Meth. Comput. Phys., 1964, 3: 1 Google Scholar

[9] Harlow F., Amsden A.. J. Comput. Phys., 1971, 8: 197 CrossRef Google Scholar

[10] Lax P., Wendroff B.. Commun. Pure Appl. Math., 1964, 17: 381 CrossRef Google Scholar

[11] Hirt C., Amsden A., Cook J.. J. Comput. Phys., 1974, 14: 227 CrossRef Google Scholar

[12] Benson D.. Comput. Meth. Appl. Mech. Eng., 1992, 99: 235 CrossRef Google Scholar

[13] Margolin L.. J. Comput. Phys., 1997, 135: 198 CrossRef Google Scholar

[14] Benson D.. J. Comput. Phys., 1992, 100: 143 CrossRef Google Scholar

[15] Galera S., Maire P., Breil J.. J Comput Phys., 2010, 229: 5755 CrossRef Google Scholar

[16] Luo H., Baum J., Lohner R.. J. Comput. Phys., 2004, 194: 304 CrossRef Google Scholar

[17] A. J. Barlow, in Challenges and recent progress indeveloping numerical methods for multi-material ALE Hydrocodes, Proceedings of ICFD 25 Year Anniversary Conference (Oxford University, Oxford, 2008 ).. Google Scholar

[18] Kucharik M., Garimella R. V., Schofield S. P., Shashkov M. J.. J. Comput. Phys., 2010, 229: 2432 CrossRef Google Scholar

[19] Barlow A.. Discov. Sci. Technol. J. AWE, 2001, 4: 10 Google Scholar

[20] Breil J., Galera S., Maire P.. Int. J. Numer. Meth. Fluids, 2011, 65: 1351 CrossRef Google Scholar

[21] Galera S., Breil J., Maire P.. Comput. Fluids, 2011, 46: 237 CrossRef Google Scholar

[22] Brouillette M.. Annu. Rev. Fluid Mech., 2002, 34: 445 CrossRef Google Scholar

[23] Anderson R., Elliott N., Pember R.. J. Comput. Phys., 2004, 199: 598 CrossRef Google Scholar

[24] Holmes R., Dimonte G., Fryxell B., Schneider M. B., Sharp D. H., Velikovich A. L.. J. Fluid Mech., 1999, 389: 55 CrossRef Google Scholar

[25] Yong H., Song P., Zhai C., Kang D. G., Gu J. F., Hang X. D., Gu P. J., Jiang S.. Commun. Theory. Phys., 2013, 59: 737 CrossRef Google Scholar

[26] Vitali E., Benson D.. Int. J. Numer. Method. Eng., 2006, 67: 1420 CrossRef Google Scholar

[27] Dyadechko V., Shashkov M.. J. Comput. Phys., 2008, 227: 5361 CrossRef Google Scholar

[28] Anbarlooei H., Mazaheri K.. Int. J. Numer. Methods Biomed. Eng., 2011, 27: 1640 CrossRef Google Scholar

[29] J. D. Foley, A. Van Dam, S. K. Feiner, and J. Hughes, Computer graphics, Principles and Practice (2nd ed) (Addison-Wesley Professional, Indianapolis, 1991).. Google Scholar

[30] Haas J. F., Stuttevant B.. J. Fluid Mech., 1987, 181: 41 CrossRef Google Scholar

[31] Amendt P., Colvin J., Ramshaw J., Robey H., Landen O. L.. Phys. Plasmas., 2003, 10: 820 CrossRef Google Scholar

[32] Jiang S., Ding Y., Miao W., Liu S. Y., Zheng Z. J., Zhang B. H., Zhang J. Y., Huang T. H., Li S. W., Chen J. B., Jiang X. H., Yi R. Q., Yang G. H., Yang J. M., Hu X., Cao Z. R., Huang Y. X.. Sci. China Ser. G-Phys. Mech. Astron., 2009, 39: 1571 Google Scholar

[33] Zhai C., Li S., Yong H., Gu P. J.. High Power Laser Part Beams, 2013, 25: 1157 CrossRef Google Scholar

qqqq

Contact and support