SCIENCE CHINA Physics, Mechanics & Astronomy, Volume 57 , Issue 10 : 2015-2020(2014) https://doi.org/10.1007/s11433-014-5559-1

Shape and gravitational field of the ellipsoidal satellites

More info
  • AcceptedJun 24, 2014
  • PublishedAug 7, 2014
PACS numbers



[1] Dermott S F, Thomas P C. The shape and internal structure of Mimas. Icarus, 1988, 73(1): 25-65. Google Scholar

[2] Thomas P C, Dermott S F. The shape of Tethys. Icarus, 1991, 94(2): 391-398. Google Scholar

[3] Thomas P C, Davies M E, Colvin T R, et al. The shape of Io from Galileo limb measurements. Icarus, 1998, 135(1): 175-180. Google Scholar

[4] Thomas P C. The shape of Triton from limb profiles. Icarus, 2000, 148(2): 587-588. Google Scholar

[5] Thomas P C, Burns J A, Helfenstein P, et al. Shapes of the saturnian icy satellites and their significance. Icarus, 2007, 190(2): 573-584. Google Scholar

[6] Thomas P C. Sizes, shapes, and derived properties of the saturnian satellites after the Cassini nominal mission. Icarus, 2010, 208(1): 395-401. Google Scholar

[7] Anderson J D, Sjogren W L, Schubert G. Galileo gravity results and the internal structure of Io. Science, 1996, 272(5262): 709-712. Google Scholar

[8] Anderson J D, Lau E L, Sjogren W L, et al. Europa's differentiated internal structure: Inferences from two Galileo encounters. Science, 1997, 276(5316): 1236-1239. Google Scholar

[9] Anderson J D, Schubert G, Jacobson R A, et al. Europa's differen-tiated internal structure: Inferences from four Galileo encounters. Science, 1998, 281(5385): 2019-2022. Google Scholar

[10] Anderson J D, Jacobson R A, Mcelrath T P, et al. Shape, mean radius, gravity field, and interior structure of Callisto. Icarus, 2001, 153(1): 157-161. Google Scholar

[11] Yoder C F. Astrometric and Geodetic Properties of Earth and the Solar System. Florida, Washington, DC: American Geophysical Union, 1995. 12-13. Google Scholar

[12] Caudal G V. The role of tidal torques on the evolution of the system of Saturn's co-orbital satellites Janus and Epimetheus. Icarus, 2013, 223(2): 733-740. Google Scholar

[13] Robutel P, Rambaux N, El Moutamid M. Influence of the coorbital resonance on the rotation of the Trojan satellites of Saturn. Celestial Mech Dyn Astron, 2012, 113(1): 1-22. Google Scholar

[14] Munk W H, Macdonald G J. The Rotation of the Earth: A Geophysical Discussion. Munk W H, MacDonald G J F, eds. Cam-bridge: Cambridge University Press, 1975. 323. Google Scholar

[15] Lambeck K. The Earth's Variable Rotation: Geophysical Causes and Consequences. Cambridge: Cambridge University Press, 2005. 32. Google Scholar

[16] Zharkov V N, Leontjev V V, Kozenko A V. Models, figures, and gravitational moments of the Galilean satellites of Jupiter and icy satellites of Saturn. Icarus, 1985, 61(1): 92-100. Google Scholar

[17] Anderson J D, Jacobson R A, Lau E L, et al. Io's gravity field and interior structure. J Geophys Res-Planets, 2001, 106(E12): 32963-32969. Google Scholar

[18] McCarthy D D, Petit G. Iers technical note no. 32. IERS Conventions, 2003, 1(32): 33-56. Google Scholar

[19] Sharma I. Stability of rubble-pile satellites. Icarus, 2014, 229: 278-294. Google Scholar

[20] Gao B X. An estimate on the lunar figure. Chin Astron Astrophys, 2009, 33(2): 179-187. Google Scholar

[21] Zhong S, Zuber M T. Long-wavelength topographic relaxation for self-gravitating planets and implications for the time-dependent compensation of surface topography. J Geophys Res-Planets, 2000, 105(E2): 4153-4164. Google Scholar

[22] Iess L, Rappaport N J, Jacobson R A, et al. Gravity field, shape, and moment of inertia of Titan. Science, 2010, 327(5971): 1367-1369. Google Scholar

[23] Yoder C F. How tidal heating in Io drives the Galilean orbital resonance locks. Nature, 1979, 279: 767-770. Google Scholar

[24] Peale S J, Cassen P, Reynolds R T. Melting of Io by tidal dissipation. Science, 1979, 203(4383): 892-894. Google Scholar

[25] Lieske J H. Galilean satellite evolution—Observational evidence for secular changes in mean motions. Astron Astrophys, 1987, 176: 146-158. Google Scholar

[26] Tricarico P. Multi-layer hydrostatic equilibrium of planets and synchronous moons: Theory and application to Ceres and to Solar system moons. arXiv:13127427. Google Scholar

[27] Castillo-Rogez J C, Matson D L, Sotin C, et al. Iapetus' geophysics: Rotation rate, shape, and equatorial ridge. Icarus, 2007, 190(1): 179-202. Google Scholar

[28] Dombard A J, Cheng A F, Mckinnon W B, et al. Delayed formation of the equatorial ridge on Iapetus from a subsatellite created in a giant impact. J Geophys Res-Planets, 2012, 117: E03002. Google Scholar


Contact and support