SCIENCE CHINA Physics, Mechanics & Astronomy, Volume 57 , Issue 8 : 1442-1448(2014) https://doi.org/10.1007/s11433-014-5519-9

Simple single field inflation models and the running of spectral index

More info
  • AcceptedMay 19, 2014
  • PublishedJul 1, 2014
PACS numbers



[1] Starobinsky A A. A new type of isotropic cosmological models without singularity. Phys Lett B, 1980, 91: 99-102. Google Scholar

[2] Guth A H. Inflationary universe: A possible solution to the horizon and flatness problems. Phys Rev D, 1981, 23: 347-356. Google Scholar

[3] Linde A D. Chaotic inflation. Phys Lett B, 1983, 129: 177-181. Google Scholar

[4] Albrecht A, Steinhardt P J. Cosmology for grand unified theories with radiatively induced symmetry breaking. Phys Rev Lett, 1982, 48:1220-1223. Google Scholar

[5] BICEP2 Collaboration. BICEP2 I: Detection of B-mode polarization at degree angular scales. arXiv:1403.3985 [astro-ph.CO]. Google Scholar

[6] Planck Collaboration. Planck 2013 results. I. Overview of products and scientific results. arXiv:1303.5062 [astro-ph.CO]. Google Scholar

[7] Hinshaw G, Larson D, Komatsu E, et al. Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Cosmological parameter results. Astrophys J Suppl, 2013, 208: 19. Google Scholar

[8] Das S, Louis T, Nolta M R, et al. The Atacama Cosmology Telescope: Temperature and gravitational lensing power spectrum measurements from three seasons of data. J Cosmol Astropart Phys, 2014, 1404: 014. Google Scholar

[9] Keisler R, Reichardt C L, Aird K A, et al. A measurement of the damping tail of the cosmic microwave background power spectrum with the South Pole Telescope. Astrophys J, 2011, 743: 28. Google Scholar

[10] Planck Collaboration. Planck 2013 results. XVI. Cosmological parameters. arXiv:1303.5076 [astro-ph.CO]. Google Scholar

[11] Planck Collaboration. Planck 2013 results. XXII. Constraints on inflation. arXiv:1303.5082 [astro-ph.CO]. Google Scholar

[12] Lyth D H. What would we learn by detecting a gravitational wave signal in the cosmic microwave background anisotropy? Phys Rev Lett,1997, 78: 1861-1863. Google Scholar

[13] Anchordoqui L A, Barger V, Goldberg H, et al. S-dual inflation: BICEP2 data without unlikeliness. Phys Lett B, 2014, 734: 134-136. Google Scholar

[14] Czerny M, Kobayashi T, Takahashi F. Running spectral index from large-field inflation with modulations revisited. arXiv:1403.4589 [astro-ph.CO]. Google Scholar

[15] Ferrara S, Kehagias A, Riotto A. The imaginary Starobinsky model. arXiv:1403.5531 [hep-th]. Google Scholar

[16] Zhu T, Wang A. Gravitational quantum effects in the light of BICEP2 results. arXiv:1403.7696 [astro-ph.CO]. Google Scholar

[17] Gao Q, Gong Y G. The challenge for single field inflation with BICEP2 result. Phys Lett B, 2014, 734: 41-43. Google Scholar

[18] Okada N, Seno?uz V N, Shafi Q. Simple inflationary models in light of BICEP2: An update. arXiv:1403.6403 [hep-ph]. Google Scholar

[19] Ellis J, Garcia M A G, Nanopoulos D V, et al. Resurrecting quadratic inflation in no-scale supergravity in light of BICEP2. arXiv:1403.7518 [hep-ph]. Google Scholar

[20] Antusch S, Nolde D. BICEP2 implications for single-field slow-roll inflation revisited. J Cosmol Astropart Phys, 2014, 1405: 035. Google Scholar

[21] Freivogel B, Kleban M, Martinez M R, et al. Observational consequences of a landscape: Epilogue. arXiv:1404.2274 [astro-ph.CO]. Google Scholar

[22] Bousso R, Harlow D, Senatore L. Inflation after false vacuum decay: New evidence from BICEP2. arXiv:1404.2278 [astro-ph.CO]. Google Scholar

[23] Kaloper N, Lawrence A. Natural chaotic inflation and UV sensitivity. arXiv:1404.2912 [hep-th]; Choudhury S, Mazumdar A. Reconstructing inflationary potential from BICEP2 and running of tensor modes. arXiv:1403.5549 [hep-th]; Choudhury S, Mazumdar A. Sub-Planckian inflation & large tensor to scalar ratio with r > 0.1. arXiv:1404.3398 [hep-th]; Choudhury S, Mazumdar A. An accurate bound on tensor-toscalar ratio and the scale of inflation. Nucl Phys B, 2014, 882: 386-396. Google Scholar

[24] Choi K Y, Kyae B. Primordial gravitational wave of BICEP2 from dynamical double hybrid inflation. arXiv:1404.3756 [hep-ph]. Google Scholar

[25] Murayama H, Nakayama K, Takahashi F, et al. Sneutrino chaotic inflation and landscape. arXiv:1404.3857 [hep-ph]. Google Scholar

[26] McDonald J. Sub-Planckian two-field inflation consistent with the Lyth bound. arXiv:1404.4620 [hep-ph]. Google Scholar

[27] Gao X, Li T, Shukla P. Fractional chaotic inflation in the lights of PLANCK and BICEP2. arXiv: 1404.5230 [hep-ph]. Google Scholar

[28] Ashoorioon A, Dimopoulos K, Sheikh-Jabbari M, et al. Non-Bunch-Davis initial state reconciles chaotic models with BICEP and Planck. arXiv:1403.6099 [hep-th]; Ashoorioon A, Dimopoulos K, Sheikh-Jabbari M, et al. Reconciliation of high energy scale models of inflation with Planck. J Cosmol Astronpart Phys, 2014, 1402: 025; Ashoorioon A, Firouzjahi H, Sheikh-Jabbari M. M-flation: Inflation from matrix valued scalar fields. J Cosmol Astronpart Phys, 2009, 0906: 018; Ashoorioon A, Sheikh-Jabbari M. Gauged M-flation, its UV sensitivity and spectator species. J Cosmol Astronpart Phys, 2011, 1106: 014. Google Scholar

[29] Sloth M S. Chaotic inflation with curvaton induced running. arXiv:1403.8051 [hep-ph]. Google Scholar

[30] Kawai S, Okada N. TeV scale seesaw from supersymmetric Higgslepton inflation and BICEP2. arXiv:1404.1450 [hep-ph]. Google Scholar

[31] Kobayashi T, Seto O. Beginning of Universe through large field hybrid inflation. arXiv:1404.3102 [hep-ph]; Kobayashi T, Seto O, Yamaguchi Y. Axion monodromy inflation with sinusoidal corrections. arXiv:1404.5518 [hep-ph]; Kobayashi T, Seto O. Polynomial inflation models after BICEP2. Phys Rev D, 2014, 89: 103524. Google Scholar

[32] Bastero-Gil M, Berera A, Ramos R O, et al. Observational implications of mattergenesis during inflation. arXiv:1404.4976 [astro-ph.CO]. Google Scholar

[33] Di Bari P, King S F, Luhn C, et al. Radiative inflation and dark energy RIDEs again after BICEP2. arXiv:1404.0009 [hep-ph]. Google Scholar

[34] Ho C M, Hsu S D H. Does the BICEP2 observation of cosmological tensor modes imply an era of nearly Planckian energy densities? arXiv:1404.0745 [hep-ph]. Google Scholar

[35] Hotchkiss S,Mazumdar A, Nadathur S. Observable gravitational waves from inflation with small field excursions. J Cosmol Astronpart Phys,2012, 1202: 008. Google Scholar

[36] Freedman D Z, van Nieuwenhuizen P, Ferrara S. Progress toward a theory of supergravity. Phys Rev D, 1976, 13: 3214-3218; Deser S, Zumino B. Consistent supergravity. Phys Lett B, 1976, 62: 335-337. Google Scholar

[37] Antusch S, Bastero-Gil M, Dutta K, et al. Chaotic inflation in supergravity with Heisenberg symmetry. Phys Lett B, 2009, 679: 428-432; Antusch S, Dutta K, Erdmenger J, et al. Towards matter inflation in heterotic string theory. J High Energy Phys, 2011, 1104: 065. Google Scholar

[38] Copeland E J, Liddle A R, Lyth D H, et al. False vacuum inflation with Einstein gravity. Phys Rev D, 1994, 49: 6410-6433; Stewart E D. Inflation, supergravity, and superstrings. Phys Rev D, 1995, 51: 6847-6853; Linde A. Particle Physics and Inflationary Cosmology. Chur, Switzerland and New York: Harwood Academic Publishers, 1990; Antusch S, Bastero-Gil M, Dutta K, et al. Solving the η-problem in hybrid inflation with heisenberg symmetry and stabilized modulus. J Cosmol Astronpart Phys, 2009, 0901: 040; Yamaguchi M. Supergravity based inflation models: A review. Class Quant Grav, 2011, 28: 103001; Martin J, Ringeval C, Vennin V. Encyclopaedia inflationaris. arXiv:1303.3787 [astro-ph.CO]. Google Scholar

[39] Lyth D H, Riotto A. Particle physics models of inflation and the cosmological density perturbation. Phys Rept, 1999, 314: 1-146. Google Scholar

[40] Goncharov A S, Linde A D, Vysotsky M I. Cosmological problems for spontaneously broken supergravity. Phys Lett B, 1984, 147: 279-283. Google Scholar

[41] Cremmer E, Ferrara S, Kounnas C, et al. Naturally vanishing cosmological constant in N=1 supergravity. Phys Lett B, 1983, 133: 61-66; Ellis J R, Lahanas A, Nanopoulos D V, et al. No-scale supersymmetric standard model. Phys Lett B, 1984, 134: 429-435; Ellis J R, Kounnas C, Nanopoulos D V. Phenomenological SU(1, 1) supergravity. Nucl Phys B, 1984, 241: 406-428; Ellis J R, Kounnas C, Nanopoulos D V. No-scale supersymmetric GUTs. Nucl Phys B, 1984, 247: 373-395; Lahanas A B. The road to no-scale supergravity. Phys Rept, 1987, 145:1-139. Google Scholar

[42] Ellis J R, Enqvist K, Nanopoulos D V, et al. SU(N, 1) inflation. Phys Lett B, 1985, 152: 175-180 [Erratum-ibid., 1985, 156: 452]. Google Scholar

[43] Enqvist K, Nanopoulos D V. Inflation from a ripple on a vanishing potential. Phys Lett B, 1985, 159: 249-255. Google Scholar

[44] Ellis J, Nanopoulos D V, Olive K A. No-scale supergravity realization of the Starobinsky model of inflation. Phys Rev Lett, 2013, 111:111301 [Erratum-ibid., 2013, 111(12): 129902]. Google Scholar

[45] Ellis J, Nanopoulos D V, Olive K A. Starobinsky-like inflationary models as avatars of no-scale supergravity. J Cosmol Astronpart Phys,2013, 1310: 009. Google Scholar

[46] Li T, Li Z, Nanopoulos D V. No-scale ripple inflation revisited. J Cosmol Astropart Phys, 2014, 1404: 018. Google Scholar

[47] Ellis J, Nanopoulos D V, Olive K A. A no-scale framework for sub-Planckian physics. Phys Rev D, 2014, 89: 043502. Google Scholar

[48] Kawasaki M, Yamaguchi M, Yanagida T. Natural chaotic inflation in supergravity. Phys Rev Lett, 2000, 85: 3572-3575. Google Scholar

[49] Yamaguchi M, Yokoyama J. New inflation in supergravity with a chaotic initial condition. Phys Rev D, 2001, 63: 043506. Google Scholar

[50] Yamaguchi M. Natural double inflation in supergravity. Phys Rev D,2001, 64: 063502. Google Scholar

[51] Kawasaki M, Yamaguchi M. Supersymmetric topological inflation model. Phys Rev D, 2002, 65: 103518. Google Scholar

[52] Kallosh R, Linde A. New models of chaotic inflation in supergravity. J Cosmol Astronpart Phys, 2010, 1011: 011. Google Scholar

[53] Kallosh R, Linde A, Rube T. General inflaton potentials in supergravity.Phys Rev D, 2011, 83: 043507. Google Scholar

[54] Nakayama K, Takahashi F, Yanagida T T. Polynomial chaotic inflation in the Planck era. Phys Lett B, 2013, 725: 111-114. Google Scholar

[55] Nakayama K, Takahashi F, Yanagida T T. Polynomial chaotic inflation in supergravity. J Cosmol Astonpart Phys, 2013, 1308: 038. Google Scholar

[56] Takahashi F. New inflation in supergravity after Planck and LHC. Phys Lett B, 2013, 727: 21-26. Google Scholar

[57] Li T, Li Z, Nanopoulos D V. No-scale ripple inflation revisited. J Cosmol Astronpart Phys, 2014, 1402: 028. Google Scholar

[58] Hebecker A, Kraus S C,Westphal A. Evading the Lyth bound in hybrid natural inflation. Phys Rev D, 2013, 88: 123506. Google Scholar

[59] McAllister L, Silverstein E, WestphalA. Gravity waves and linear inflation from axion monodromy. Phys Rev D, 2010, 82: 046003. Google Scholar

[60] Stewart E D, Lyth D H. A more accurate analytic calculation of the spectrum of cosmological perturbations produced during inflation. Phys Lett B, 1993, 302: 171-175. Google Scholar

[61] Ijjas A, Steinhardt P J, Loeb A. Inflationary paradigm in trouble after Planck2013. Phys Lett B, 2013, 723: 261-266. Google Scholar

[62] Ben-Dayan I, Brustein R. Cosmic microwave background observables of small field models of inflation J Cosmol Astropart Phys, 2010, 1009:007. Google Scholar


Contact and support