SCIENCE CHINA Physics, Mechanics & Astronomy, Volume 57 , Issue 8 : 1414-1430(2014) https://doi.org/10.1007/s11433-014-5512-3

Exploring bouncing cosmologies with cosmological surveys

More info
  • AcceptedMay 16, 2014
  • PublishedJul 1, 2014
PACS numbers



[1] BICEP2 Collaboration. BICEP2 I: Detection of B-mode polarizationat degree angular scales. arXiv:1403.3985 [astro-ph.CO]. Google Scholar

[2] Planck Collaboration. Planck 2013 results. XVI. Cosmological parameters.arXiv:1303.5076 [astro-ph.CO]. Google Scholar

[3] GuthAH.Theinflationary universe: A possible solution to the horizonand flatness problems. Phys Rev D, 1981, 23(2): 347. Google Scholar

[4] Linde A D. A new inflationary universe scenario: A possible solutionof the horizon, flatness, homogeneity, isotropy and primordialmonopole problems. Phys Lett B, 1982, 108(6): 389-393. Google Scholar

[5] Albrecht A, Steinhardt P J. Cosmology for grand unified theories withradiatively induced symmetry breaking. Phys Rev Lett, 1982, 48:1220-1223. Google Scholar

[6] Starobinsky A A. A new type of isotropic cosmological models withoutsingularity. Phys Lett B, 1980, 91: 99-102. Google Scholar

[7] Fang L Z. Entropy generation in the early universe by dissipative processesnear the Higgs' phase transitions. Phys Lett B, 1980, 95: 154-156. Google Scholar

[8] Sato K. First order phase transition of a vacuum and expansion of theuniverse. Mon Not Roy Astron Soc, 1981, 195: 467-479. Google Scholar

[9] Starobinsky A A. Spectrum of relict gravitational radiation and theearly state of the universe. JETP Lett, 1979, 30: 682-685. Google Scholar

[10] Gasperini M, Veneziano G. Pre-big bang in string cosmology. AstropartPhys, 1993, 1: 317-339. Google Scholar

[11] Veneziano G. Scale factor duality for classical and quantum strings.Phys Lett B, 1991, 265: 287-294. Google Scholar

[12] Khoury J, Ovrut B A, Steinhardt P J, et al. The Ekpyrotic universe:Colliding branes and the origin of the hot big bang. Phys Rev D,2001, 64: 123522. Google Scholar

[13] Ellis G F R, Maartens R. The emergent universe: Inflationary cosmologywith no singularity. Class Quant Grav, 2004, 21: 223. Google Scholar

[14] Brandenberger R H, Vafa C. Superstrings in the early universe. NuclPhys B, 1989, 316: 391-410. Google Scholar

[15] Cai Y F, Li M, Zhang X. Emergent universe scenario via quintommatter. Phys Lett B, 2012, 718: 248-254. Google Scholar

[16] Cai Y F,Wan Y, Zhang X. Cosmology of the spinor emergent universeand scale-invariant perturbations. Phys Lett B, 2014, 731: 217. Google Scholar

[17] Wands D. Duality invariance of cosmological perturbation spectra.Phys Rev D, 1999, 60: 023507. Google Scholar

[18] Finelli F, Brandenberger R. On the generation of a scale invariantspectrum of adiabatic fluctuations in cosmological models with a contractingphase. Phys Rev D, 2002, 65: 103522. Google Scholar

[19] Brandenberger R H. Introduction to early universe cosmology.arXiv:1103.2271 [astro-ph.CO]. Google Scholar

[20] Cai Y F, Easson D A, Brandenberger R. Towards a nonsingularbouncing cosmology. arXiv:1206.2382 [hep-th]. Google Scholar

[21] Cai Y F, Qiu T T, Xia J Q, et al. A model of inflationary cosmologywithout singularity. Phys Rev D, 2009, 79: 021303. Google Scholar

[22] Tolman R C. On the problem of the entropy of the universe as a whole.Phys Rev, 1931, 37: 1639. Google Scholar

[23] Mukhanov V F, Brandenberger R H. A nonsingular universe. PhysRev Lett, 1992, 68: 1969-1972. Google Scholar

[24] Cai Y F, Qiu T, Piao Y S, et al. Bouncing universe with quintommatter. arXiv:0704.1090 [gr-qc]. Google Scholar

[25] Feng B, Wang X L, Zhang X M. Dark energy constraints from thecosmic age and supernova. Phys Lett B, 2005, 607: 35-41. Google Scholar

[26] Cai Y F, Saridakis E N, Setare M R, et al. Quintom cosmology: Theoreticalimplications and observations. Phys Rept, 2010, 493: 1-60. Google Scholar

[27] Cline J M, Jeon S, Moore G D. The Phantom menaced: Constraintson low-energy effective ghosts. Phys Rev D, 2004, 70: 043543. Google Scholar

[28] Belinsky V A, Khalatnikov I M, Lifshitz E M. Oscillatory approachto a singular point in the relativistic cosmology. Adv Phys, 1970, 19:525-573. Google Scholar

[29] Piao Y S, Feng B, Zhang X M. Suppressing CMB quadrupole witha bounce from contracting phase to inflation. Phys Rev D, 2004, 69:103520. Google Scholar

[30] Liu Z G, Guo Z K, Piao Y S. Obtaining the CMB anomalies with abounce from the contracting phase to inflation. Phys Rev D, 2013,88: 063539. Google Scholar

[31] Cai Y F, Zhang X. Evolution of metric perturbations in a model ofnonsingular inflationary cosmology. arXiv:0808.2551 [astro-ph]. Google Scholar

[32] Liu J, Cai Y F, Li H. Evidences for bouncing evolution before inflationin cosmological surveys. arXiv:1009.3372 [astro-ph.CO]. Google Scholar

[33] Xia J Q, Cai Y F, Li H, et al. Evidence for bouncing evolution beforeinflation after BICEP2. arXiv:1403.7623 [astro-ph.CO]. Google Scholar

[34] Mielczarek J, Cailleteau T, Grain J, et al. Inflation in loop quantumcosmology: Dynamics and spectrum of gravitational waves. PhysRev D, 2010, 81: 104049. Google Scholar

[35] Mukhanov V F, Chibisov G V. Quantum fluctuation and nonsingularuniverse (In Russian). JETP Lett, 1981, 33: 532-549. Google Scholar

[36] Press W H. Spontaneous production of the Zel'dovich spectrum ofcosmological fluctuations. Phys Scripta, 1980, 21: 702. Google Scholar

[37] Grishchuk L P. Amplification of gravitational waves in an istropicuniverse. Zh Eksp Teor Fiz, 1974, 67: 825. Google Scholar

[38] COBE Collaboration. Structure in the COBE differential microwaveradiometer first year maps. Astrophys J, 1992, 396: L1-L5. Google Scholar

[39] WMAP Collaboration. First year Wilkinson Microwave AnisotropyProbe (WMAP) observations: Preliminary maps and basic results.Astrophys J Suppl, 2003, 148: 1. Google Scholar

[40] SDSS Collaboration. The first data release of the Sloan Digital SkySurvey. Astron J, 2003, 126: 2081. Google Scholar

[41] Mukhanov V F, Feldman H A, Brandenberger R H. Theory of cosmologicalperturbations. Part 1. Classical perturbations. Part 2. Quantumtheory of perturbations. Part 3. Extensions. Phys Rept, 1992,215: 203. Google Scholar

[42] Armendariz-Picon C, Damour T, Mukhanov V F. k-inflation. PhysLett B, 1999, 458: 209-218. Google Scholar

[43] Garriga J, Mukhanov V F. Perturbations in k-inflation. Phys Lett B,1999, 458: 219-225. Google Scholar

[44] Planck Collaboration. Planck 2013 results. XXIV. Constraints onprimordial non-Gaussianity. arXiv:1303.5084 [astro-ph.CO]. Google Scholar

[45] Peebles P J E, Yu J T. Primeval adiabatic perturbation in an expandinguniverse. Astrophys J, 1970, 162: 815. Google Scholar

[46] Sunyaev R A, Zeldovich Y B. Small scale fluctuations of relic radiation.Astrophys Space Sci, 1970, 7: 3-19. Google Scholar

[47] Harrison E R. Fluctuations at the threshold of classical cosmology.Phys Rev D, 1970, 1: 2726. Google Scholar

[48] Zeldovich Y B. A Hypothesis, unifying the structure and the entropyof the universe. Mon Not Roy Astron Soc, 1972, 160: 1P. Google Scholar

[49] Borde A, Vilenkin A. Eternal inflation and the initial singularity.arXiv:gr-qc/9312022. Google Scholar

[50] Copeland E J, Liddle A R, Lyth D H, et al. False vacuum inflationwith Einstein gravity. Phys Rev D, 1994, 49: 6410. Google Scholar

[51] Lyth D H.What would we learn by detecting a gravitational wave signalin the cosmic microwave background anisotropy. Phys Rev Lett,1997, 78: 1861. Google Scholar

[52] Brandenberger R H. Inflationary cosmology: Progress and problems.arXiv: hep-ph/9910410.. Google Scholar

[53] Martin J, Brandenberger R H. The TransPlanckian problem of inflationarycosmology. Phys Rev D, 2001, 63: 123501. Google Scholar

[54] Tsamis N C, Woodard R P. Relaxing the cosmological constant. PhysLett B, 1993, 301: 351-357. Google Scholar

[55] Mukhanov V F, Abramo L R W, Brandenberger R H. On the back reactionproblem for gravitational perturbations. arXiv:gr-qc/9609026. Google Scholar

[56] Calcagni G. Cosmology of the Lifshitz universe. arXiv:0904.0829[hep-th]. Google Scholar

[57] Kiritsis E, Kofinas G. Horava-Lifshitz cosmology. Nucl Phys B,2009, 821: 467-480. Google Scholar

[58] Brandenberger R. Matter bounce in Horava-Lifshitz cosmology. PhysRev D, 2009, 80: 043516. Google Scholar

[59] Cai Y F, Saridakis E N. Non-singular cosmology in a model of nonrelativisticgravity. arXiv:0906.1789 [hep-th]. Google Scholar

[60] Cai Y F, Chen S H, Dent J B, et al. Matter bounce cosmology withthe f (T) gravity. Class Quant Grav, 2011, 28: 215011. Google Scholar

[61] Poplawski N J. Nonsingular, big-bounce cosmology from spinortorsioncoupling. Phys Rev D, 2012, 85: 107502. Google Scholar

[62] Cai Y F, aridakis E N. Cyclic cosmology from Lagrange-multipliermodified gravity. Class Quant Grav, 2011, 28: 035010. Google Scholar

[63] Cai Y F, Saridakis E N. Non-singular cyclic cosmology without phantommenace. arXiv:1108.6052 [gr-qc]. Google Scholar

[64] Cai Y F, Gao C, Saridakis E N. Bounce and cyclic cosmology in extendednonlinear massive gravity. arXiv:1207.3786 [astro-ph.CO]. Google Scholar

[65] Biswas T, Mazumdar A, Siegel W. Bouncing universes in stringinspiredgravity. arXiv:hep-th/0508194. Google Scholar

[66] Cai Y F, Qiu T, Brandenberger R, et al. On perturbations of quintombounce. arXiv:0711.2187 [hep-th]. Google Scholar

[67] Cai Y F, Qiu T T, Brandenberger R, et al. A nonsingular cosmologywith a scale-invariant spectrum of cosmological perturbations fromLee-Wick theory. Phys Rev D, 2009, 80: 023511. Google Scholar

[68] Bhattacharya K, Cai Y F, Das S. Lee-Wick radiation induced bouncinguniverse models. Phys Rev D, 2013, 87: 083511. Google Scholar

[69] Buchbinder E I, Khoury J, Ovrut B A. New Ekpyrotic cosmology.Phys Rev D, 2007, 76: 123503. Google Scholar

[70] Creminelli P, Senatore L. A smooth bouncing cosmology with scaleinvariant spectrum. arXiv:hep-th/0702165. Google Scholar

[71] Lin C, Brandenberger R H, Perreault L. A matter bounce by means ofghost condensation. arXiv:1007.2654 [hep-th]. Google Scholar

[72] Brandenberger R H, Kounnas C, Partouche H, et al. Cosmologicalperturbations across an S-brane. arXiv:1312.2524 [hep-th]. Google Scholar

[73] Martin J, Peter P. Parametric amplification of metric fluctuationsthrough a bouncing phase. Phys Rev D, 2003, 68: 103517. Google Scholar

[74] Solomons D M, Dunsby P, Ellis G. Bounce behaviour in Kantowski-Sachs and Bianchi cosmologies. Class Quant Grav, 2006, 23: 6585. Google Scholar

[75] Novello M, Bergliaffa S E P. Bouncing cosmologies. Phys Rept,2008, 463: 127-213. Google Scholar

[76] Lehners J L. Ekpyrotic and cyclic cosmology. Phys Rept, 2008, 465:223-263. Google Scholar

[77] Erickson J K, Wesley D H, Steinhardt P J, et al. Kasner and mixmasterbehavior in universes with equation of state w≥1. Phys Rev D,2004, 69: 063514. Google Scholar

[78] Cai Y F, Brandenberger R, Peter P. Anisotropy in a nonsingularbounce. Class Quant Grav, 2013, 30: 075019. Google Scholar

[79] Xue B, Steinhardt P J. Unstable growth of curvature perturbation in non-singular bouncing cosmologies. Phys Rev Lett, 2010, 105:261301. Google Scholar

[80] Xue B, Steinhardt P J. Evolution of curvature and anisotropy near anonsingular bounce. Phys Rev D, 2011, 84: 083520. Google Scholar

[81] Cai Y F, McDonough E, Duplessis F, et al. Two field matter bouncecosmology. arXiv:1305.5259 [hep-th]. Google Scholar

[82] Koehn M, Lehners J L, Ovrut B A. A cosmological super-bounce.arXiv:1310.7577 [hep-th]. Google Scholar

[83] Cai Y F, Wilson-Ewing E. Non-singular bounce scenarios inloop quantum cosmology and the effective field description.arXiv:1402.3009 [gr-qc]. Google Scholar

[84] Wilson-Ewing E. The matter bounce scenario in loop quantum cosmology.arXiv:1211.6269 [gr-qc]. Google Scholar

[85] Wilson-Ewing E. Ekpyrotic loop quantum cosmology.arXiv:1306.6582 [gr-qc]. Google Scholar

[86] Amorós J, Haro de J, Odintsov S D. On R + αR2 loop quantum cosmology.arXiv:1402.3071 [gr-qc]. Google Scholar

[87] Cai Y F, Brandenberger R, Zhang X. The matter bounce curvatonscenario. arXiv:1101.0822 [hep-th]. Google Scholar

[88] Cai Y F, Quintin J, Saridakis E N, et al. Nonsingular bouncing cosmologiesin light of BICEP2. arXiv:1404.4364 [astro-ph.CO]. Google Scholar

[89] Cai Y F, Zhang X. Primordial perturbation with a modified dispersionrelation. Phys Rev D, 2009, 80: 043520. Google Scholar

[90] Sasaki M. Large scale quantum fluctuations in the inflationary universe.Prog Theor Phys, 1986, 76: 1036-1046. Google Scholar

[91] Mukhanov V F. Quantum theory of gauge invariant cosmological perturbations.Zh Eksp Teor Fiz, 1988, 94: 1. Google Scholar

[92] Dutta S, Vachaspati T. Islands in the Lambda-sea. Phys Rev D, 2005,71: 083507. Google Scholar

[93] Piao Y S. Is the island universe model consistent with observations.Phys Rev D, 2005, 72: 103513. Google Scholar

[94] Cai Y F, Xue W, Brandenberger R, et al. Non-gaussianity in a matterbounce. arXiv:0903.0631 [astro-ph.CO]. Google Scholar

[95] Cai Y F, Xue W, Brandenberger R, et al. Thermal fluctuations andbouncing cosmologies. arXiv:0903.4938 [hep-th]. Google Scholar

[96] Cai Y F, Brandenberger R, Zhang X. Preheating a bouncing universe.Phys Lett B, 2011, 703: 25-33. Google Scholar

[97] Arkani-Hamed N, Cheng H C, Luty M A, et al. Ghost condensationand a consistent infrared modification of gravity. arXiv:hepth/0312099. Google Scholar

[98] Arkani-Hamed N, Creminelli P, Mukohyama S, et al. Ghost inflation.arXiv:hep-th/0312100. Google Scholar

[99] Nicolis A, Rattazzi R, Trincherini E. The Galileon as a local modificationof gravity. Phys Rev D, 2009, 79: 064036. Google Scholar

[100] Deffayet C, Gao X, Steer D A, et al. From k-essence to generalisedGalileons. Phys Rev D, 2011, 84: 064039. Google Scholar

[101] Horndeski G W. Second-order scalar-tensor field equations in a fourdimensionalspace. Int J Theor Phys, 1974, 10: 363-384. Google Scholar

[102] Deffayet C, Pujolas O, Sawicki I, et al. Imperfect dark energy fromkinetic gravity braiding. arXiv:1008.0048 [hep-th]. Google Scholar

[103] Kobayashi T, Yamaguchi M, Yokoyam J I. G-inflation: Inflationdriven by the Galileon field. Phys Rev Lett, 2010, 105: 231302. Google Scholar

[104] Kamada K, Kobayashi T, Yamaguchi M, et al. Higgs G-inflation.Phys Rev D, 2011, 83: 083515. Google Scholar

[105] Ohashi J, Tsujikawa S. Potential-driven Galileon inflation.arXiv:1207.4879 [gr-qc]. Google Scholar

[106] Qiu T, Evslin J, Cai Y F, et al. Bouncing galileon cosmologies.arXiv:1108.0593 [hep-th]. Google Scholar

[107] Easson D A, Sawicki I, Vikman A. G-Bounce. arXiv:1109.1047 [hepth]. Google Scholar

[108] Qiu T, Gao X, Saridakis E N. Towards anisotropy-free and nonsingularbounce cosmology with scale-invariant perturbations. Phys RevD, 2013, 88:043525. Google Scholar

[109] Afshordi N, Chung D J H, Geshnizjani G. Cuscuton: A causal fieldtheory with an infinite speed of sound. Phys Rev D, 2007, 75: 083513. Google Scholar

[110] Afshordi N, Chung D J H, DoranM, et al. Cuscuton cosmology: Darkenergy meets modified gravity. Phys Rev D, 2007, 75: 123509. Google Scholar

[111] Kehagias A, Riotto A. Remarks about the tensor mode detection bythe BICEP2 collaboration and the super-planckian excursions of theinflaton field. arXiv:1403.4811 [astro-ph.CO]. Google Scholar

[112] Brandenberger R H, Nayeri A, Patil S P. Closed string thermodynamicsand a blue tensor spectrum. arXiv:1403.4927 [astro-ph.CO]. Google Scholar

[113] Li H, Xia J Q, Zhang X. Global fitting analysis on cosmological modelsafter BICEP2. arXiv:1404.0238 [astro-ph.CO]. Google Scholar

[114] Cai Y F, Gong J Q, Pi S. Conformal description of inflation and primordialB-modes. arXiv:1404.2560 [hep-th]. Google Scholar

[115] Lizarraga J, Urrestilla J, Daverio D, et al. Can topological defectsmimic the BICEP2 B-mode signal. arXiv:1403.4924 [astro-ph.CO]. Google Scholar

[116] Zhao W, Cheng C, Huang Q G. Hint of relic gravitational waves inthe Planck and WMAP data. arXiv:1403.3919 [astro-ph.CO]. Google Scholar

[117] Ma Y Z, Wang Y. Reconstructing the local potential of inflation withBICEP2 data. arXiv:1403.4585 [astro-ph.CO]. Google Scholar

[118] Harigaya K, Yanagida T T. Discovery of large scale tensor mode andchaotic inflation in supergravity. arXiv:1403.4729 [hep-ph]. Google Scholar

[119] Gong J O. Non-trivial running of the primordial tensor spectrum.arXiv:1403.5163 [astro-ph.CO]. Google Scholar

[120] Miranda V, Hu W, Adshead P. Steps to reconcile inflationary tensorand scalar spectra. arXiv:1403.5231 [astro-ph.CO]. Google Scholar

[121] Hertzberg M P. Inflation, symmetry, and B-modes. arXiv:1403.5253[hep-th]. Google Scholar

[122] Gerbino M, Marchini A, Pagano L, et al. Blue gravity waves fromBICEP2. arXiv:1403.5732 [astro-ph.CO]. Google Scholar

[123] Wang Y, Xue W. Inflation and alternatives with blue tensor spectra.arXiv:1403.5817 [astro-ph.CO]. Google Scholar

[124] Moss A, Pogosian L. Did BICEP2 see vector modes? First B-modeconstraints on cosmic defects. arXiv:1403.6105 [astro-ph.CO]. Google Scholar

[125] Bonvin C, Durrer R, Maartens R. Can primordial magnetic fields bethe origin of the BICEP2 data. arXiv:1403.6768 [astro-ph.CO]. Google Scholar

[126] Zhang J F, Li Y H, Zhang X. Sterile neutrinos help reconcile the observationalresults of primordial gravitational waves from Planck andBICEP2. arXiv:1403.7028 [astro-ph.CO]. Google Scholar

[127] Lyth D H. BICEP2, the curvature perturbation and supersymmetry.arXiv:1403.7323 [hep-ph]. Google Scholar

[128] Di Bari P, King S F, Luhn C, et al. Radiative inflation and dark energyRIDEs again after BICEP2. arXiv:1404.0009 [hep-ph]. Google Scholar

[129] Hazra D K, Shafieloo A, Smoot G F, et al. Whipped inflation.arXiv:1404.0360 [astro-ph.CO]. Google Scholar

[130] Smith K M, Dvorkin C, Boyle L, et al. On quantifying andresolving the BICEP2/Planck tension over gravitational waves.arXiv:1404.0373 [astro-ph.CO]. Google Scholar

[131] Hossain M W, Myrzakulov R, Sami M, et al. B mode polarizationà la BICEP2 and relic gravity waves produced during quintessentialinflation. arXiv:1404.1445 [gr-qc]. Google Scholar

[132] Chung Y C, Lin C. Topological inflation with large tensor-to-scalarratio. arXiv:1404.1680 [astro-ph.CO]. Google Scholar

[133] Hu B, Hu JW, Guo Z K, et al. Reconstruction of the primordial powerspectra with Planck and BICEP2. arXiv:1404.3690 [astro-ph.CO]. Google Scholar

[134] Cai Y F, Wang Y. Testing quantum gravity effects with latest CMBobservations. arXiv:1404.6672 [astro-ph.CO]. Google Scholar

[135] Penrose R. Gravitational collapse and space-time singularities. PhysRev Lett, 1965, 14: 57-59. Google Scholar

[136] Hawking S W, Penrose R. The singularities of gravitational collapseand cosmology. Proc Roy Soc Lond A, 1970, 314: 529-548. Google Scholar

[137] Borde A, Guth A H, Vilenkin A. Inflationary space-times are incom pletein past directions. Phys Rev Lett, 2003, 90: 151301. Google Scholar

[138] Lilley M, Lorenz L, Clesse S. Observational signatures of a nonsingularbouncing cosmology. arXiv:1104.3494 [gr-qc]. Google Scholar

[139] Graham P W, Horn B, Kachru S, et al. A simple harmonic universe.arXiv:1109.0282 [hep-th]. Google Scholar

[140] Linsefors L, Cailleteau T, Barrau A, et al. Primordial tensor powerspectrum in holonomy corrected Ω loop quantum cosmology. PhysRev D, 2013, 87: 107503. Google Scholar

[141] Linsefors L, Barrau A. Duration of inflation and conditions at thebounce as a prediction of effective isotropic loop quantum cosmology.Phys Rev D, 2013, 87: 123509. Google Scholar

[142] Osipov M, Rubakov V. Galileon bounce after ekpyrotic contraction.arXiv:1303.1221 [hep-th]. Google Scholar

[143] Xue B, Garfinkle D, Pretorius F, et al. Nonperturbative analysis ofthe evolution of cosmological perturbations through a nonsingularbounce. Phys Rev D, 2013, 88: 083509. Google Scholar

[144] Garriga J, Vilenkin A, Zhang J. Non-singular bounce transitions inthe multiverse. arXiv:1309.2847 [hep-th]. Google Scholar

[145] Bamba K, Makarenko A N, Myagky A N, et al. Bounce cosmologyfrom F(R) gravity and F(R) bigravity. arXiv:1309.3748 [hep-th]. Google Scholar

[146] Bamba K, Makarenko A N,Myagky A N, et al. Bouncing cosmologyin modified Gauss-Bonnet gravity. Phys Lett B, 2014, 732: 349-355. Google Scholar

[147] Li C, Brandenberger R H, Cheung Y K E. Big bounce genesis.arXiv:1403.5625 [gr-qc]. Google Scholar

[148] Gao X, Lilley M, Peter P. Production of non-gaussianities in a bouncingphase. arXiv:1403.7958 [gr-qc]. Google Scholar


Contact and support