logo

SCIENCE CHINA Information Sciences, Volume 64 , Issue 10 : 201401(2021) https://doi.org/10.1007/s11432-021-3235-7

Recent progress of integrated circuits and optoelectronic chipsfootnotetext*Corresponding author (email: yhao@xidian.edu.cn, syxiang@xidian.edu.cn)

More info
  • ReceivedFeb 9, 2021
  • AcceptedMar 30, 2021
  • PublishedMay 27, 2021

Abstract


Acknowledgment

This work was supported by National Outstanding Youth Science Fund Project of National Natural Science Foundation of China (Grant No. 62022062), National Natural Science Foundation of China (Grant Nos. 61974177, 61674119), Fundamental Research Funds for the Central Universities (Grant No. JB210114). The authors would like to thank the experts and researchers who provided the materials for this review.


References

[1] Hao Y, Jia X Z, Dong G, et al. Introduction to Microelectronics (in Chinese). 2nd ed. Beijing: Publishing House of Electronics Industry, 2011. Google Scholar

[2] Hao Y, Zhang J, Shen B. Progress in Group III nitride semiconductor electronic devices. J Semicond, 2012, 33: 081001 CrossRef ADS Google Scholar

[3] Tsao J Y, Chowdhury S, Hollis M A. Ultrawide-Bandgap Semiconductors: Research Opportunities and Challenges. Adv Electron Mater, 2018, 4: 1600501 CrossRef Google Scholar

[4] Zhou H, Zhang J, Zhang C. A review of the most recent progresses of state-of-art gallium oxide power devices. J Semicond, 2019, 40: 011803 CrossRef ADS Google Scholar

[5] Zhang H, Yuan L, Tang X. Progress of Ultra-Wide Bandgap Ga2O3 Semiconductor Materials in Power MOSFETs. IEEE Trans Power Electron, 2020, 35: 5157-5179 CrossRef ADS Google Scholar

[6] Moore G E. Cramming more components onto integrated circuits. Electronics, 1965, 38: 114-117. Google Scholar

[7] Moore G E. Progress in digital integrated electronics. In: Proceedings of IEEE Int'l Electron Devices Meeting Technical Digest, 1975. 11--13. Google Scholar

[8] Dennard R H, Gaensslen F H, Yu H N. Design of ion-implanted MOSFET's with very small physical dimensions. IEEE J Solid-State Circuits, 1974, 9: 256-268 CrossRef ADS Google Scholar

[9] Salahuddin S, Ni K, Datta S. The era of hyper-scaling in electronics. Nat Electron, 2018, 1: 442-450 CrossRef Google Scholar

[10] Shalf J M, Leland R. Computing beyond Moore's law. Computer, 2015, 48: 14-23. Google Scholar

[11] Arden W, Brillouët M, Cogez P, et al. “More-than-Moore" White Paper. IRTS, 2010. Google Scholar

[12] Khan H N, Hounshell D A, Fuchs E R H. Science and research policy at the end of Moore's law. Nat Electron, 2018, 1: 14-21 CrossRef Google Scholar

[13] Borkar S. Design challenges of technology scaling. IEEE Micro, 1999, 19: 23-29. Google Scholar

[14] Collaert N. Device architectures for the 5 nm technology node and beyond. 2016. https://bjpcjp.github.io/pdfs/chips/SEMICON_Taiwan_2016_collaert.pdf. Google Scholar

[15] Jacob A P, Xie R, Sung M G. Scaling Challenges for Advanced CMOS Devices. Int J Hi Spe Ele Syst, 2017, 26: 1740001 CrossRef Google Scholar

[16] Barraud S, Previtali B, Vizioz C, et al. 7-Levels-stacked nanosheet GAA transistors for high performance computing. In: Proceedings of IEEE Symposium on VLSI Technology, 2020. Google Scholar

[17] Veloso A, Eneman G, Huynh-Bao T. Vertical nanowire and nanosheet FETs: device features, novel schemes for improved process control and enhanced mobility, potential for faster & more energy efficient circuits. In: Proceedings of IEEE International Electron Devices Meeting, 2019. 230--233. Google Scholar

[18] Perrine B. 3D sequential integration. In: Proceedings of IEEE International Electron Devices Meeting (IEDM), 2019. Google Scholar

[19] Han G Q, Hao Y. Design technology co-optimization towards sub-3 nm technology nodes. J Semicond, 2021, 42: 020301-020301. Google Scholar

[20] Borghetti J, Snider G S, Kuekes P J. `Memristive' switches enable `stateful' logic operations via material implication. Nature, 2010, 464: 873-876 CrossRef ADS Google Scholar

[21] Chi P, Li S, Xu C. PRIME. SIGARCH Comput Archit News, 2016, 44: 27-39 CrossRef Google Scholar

[22] Manipatruni S, Nikonov D E, Lin C C. Scalable energy-efficient magnetoelectric spin-orbit logic. Nature, 2019, 565: 35-42 CrossRef Google Scholar

[23] Zhang W, Gao B, Tang J. Neuro-inspired computing chips. Nat Electron, 2020, 3: 371-382 CrossRef Google Scholar

[24] Hickmott T W. Low-Frequency Negative Resistance in Thin Anodic Oxide Films. J Appl Phys, 1962, 33: 2669-2682 CrossRef ADS Google Scholar

[25] Beck A, Bednorz J G, Gerber C. Reproducible switching effect in thin oxide films for memory applications. Appl Phys Lett, 2000, 77: 139-141 CrossRef ADS Google Scholar

[26] Ovshinsky S R. Reversible Electrical Switching Phenomena in Disordered Structures. Phys Rev Lett, 1968, 21: 1450-1453 CrossRef ADS Google Scholar

[27] Wong H S P, Raoux S, Kim S B. Phase Change Memory. Proc IEEE, 2010, 98: 2201-2227 CrossRef Google Scholar

[28] Chappert C, Fert A, Van Dau F N. The emergence of spin electronics in data storage. Nat Mater, 2007, 6: 813-823 CrossRef ADS Google Scholar

[29] Xiaobin Wang , Yiran Chen , Haiwen Xi . Spintronic Memristor Through Spin-Torque-Induced Magnetization Motion. IEEE Electron Device Lett, 2009, 30: 294-297 CrossRef ADS Google Scholar

[30] Rizzo N D, Houssameddine D, Janesky J. A Fully Functional 64 Mb DDR3 ST-MRAM Built on 90 nm CMOS Technology. IEEE Trans Magn, 2013, 49: 4441-4446 CrossRef ADS Google Scholar

[31] Lee K, Kim W J, Lee J H, et al. 1 Gbit high density embedded STT-MRAM in 28 nm FDSOI technology. In: Proceedings of IEEE International Electron Devices Meeting (IEDM) Tech Dig, 2019. Google Scholar

[32] Jerry M, Chen P Y, Zhang J C, et al. Ferroelectric FET analog synapse for acceleration of deep neural network training. In: Proceedings of IEEE International Electron Devices Meeting (IEDM), 2017. Google Scholar

[33] Tang J, Bishop D, Kim S, et al. ECRAM as scalable synaptic cell for high-speed, low-power neuromorphic computing. In: Proceedings of IEEE International Electron Devices Meeting, 2018. Google Scholar

[34] Ni K, Yin X, Laguna A F. Ferroelectric ternary content-addressable memory for one-shot learning. Nat Electron, 2019, 2: 521-529 CrossRef Google Scholar

[35] Li B Z, Gu J J, Jiang W Z. Artificial intelligence (AI) chip technology review. In: Proceedings of International Conference on Machine Learning, Big Data and Business Intelligence (MLBDBI), 2019. 114--117. Google Scholar

[36] Akopyan F, Sawada J, Cassidy A. TrueNorth: Design and Tool Flow of a 65 mW 1 Million Neuron Programmable Neurosynaptic Chip. IEEE Trans Comput-Aided Des Integr Circuits Syst, 2015, 34: 1537-1557 CrossRef Google Scholar

[37] Davies M, Srinivasa N, Lin T H. Loihi: A Neuromorphic Manycore Processor with On-Chip Learning. IEEE Micro, 2018, 38: 82-99 CrossRef Google Scholar

[38] Naffziger S, Lepak K, Paraschou M, et al. 2.2 AMD chiplet architecture for high-performance server and desktop products. In: Proceedings of IEEE International Solid-State Circuits Conference (ISSCC), 2020. 44--45. Google Scholar

[39] You X H, Zhang C, Tan X S, et al. AI for 5G: research directions and paradigms. Sci China Inf Sci, 2019, 62: 021301. Google Scholar

[40] Ali A, Dinc H, Bhoraskar P, et al. A 12b 18 GS/s RF sampling ADC with an integrated wideband track-and-hold amplifier and background calibration. In: Proceedings of IEEE International Solid-State Circuits Conference (ISSCC), 2020. 250--252. Google Scholar

[41] Shibata H, Taylor G, Schell B, et al. An 800 MHz-BW VCO-based continuous-time pipelined ADC with inherent anti-aliasing and on-chip digital reconstruction filter. In: Proceedings of IEEE International Solid-State Circuits Conference (ISSCC), 2020. 260--262. Google Scholar

[42] Holt W M. Moore's law: a path going forward. In: Proceedings of IEEE International Solid-State Circuits Conference (ISSCC), 2016. 8--13. Google Scholar

[43] Zhu S, Xu B, Wu B. A Skew-Free 10 GS/s 6 bit CMOS ADC With Compact Time-Domain Signal Folding and Inherent DEM. IEEE J Solid-State Circuits, 2016, 51: 1785-1796 CrossRef ADS Google Scholar

[44] Seok E, Cao C H, Shim D, et al. A 410 GHz CMOS push-push oscillator with an on-chip patch antenna. In: Proceedings of IEEE International Solid-State Circuits Conference (ISSCC), 2008. 472--473. Google Scholar

[45] Sengupta K, Hajimiri A. A 0.28 THz 4$\times$4 power-generation and beam-steering array. In: Proceedings of IEEE International Solid-State Circuits Conference (ISSCC), 2012. 256--258. Google Scholar

[46] Han R, Afshari E. A 260 GHz broadband source with 1.1 mW continuous-wave radiated power and EIRP of 15.7 dBm in 65 nm CMOS. In: Proceedings of IEEE International Solid-State Circuits Conference (ISSCC), 2013. 138--139. Google Scholar

[47] Tousi Y, Afshari E. A scalable THz 2D phased array with +17 dBm of EIRP at 338 GHz in 65 nm bulk CMOS. In: Proceedings of IEEE International Solid-State Circuits Conference (ISSCC), 2014. 258--259. Google Scholar

[48] Meng X, Chi B, Wang Z. CMOS Cross-Coupled Oscillator Operating Close to the Transistor's $f_{\max~}$. IEEE Microw Wireless Compon Lett, 2017, 27: 1131-1133 CrossRef Google Scholar

[49] Park J D, Kang S, Thyagarajan S V, et al. A 260 GHz fully integrated CMOS transceiver for wireless chip-to-chip communication. In: Proceedings of Symposium on VLSI Circuits (VLSIC), 2012. 48--49. Google Scholar

[50] Wang Z, Chiang P Y, Nazari P, et al. A 210 GHz fully integrated differential transceiver with fundamental-frequency VCO in 32 nm SOI CMOS. In: Proceedings of IEEE International Solid-State Circuits Conference (ISSCC), 2013. 136--137. Google Scholar

[51] Deng X D, Li Y, Li J. A 320-GHz 1$\times$4 Fully Integrated Phased Array Transmitter Using 0.13-$\mu$m SiGe BiCMOS Technology. IEEE Trans THz Sci Technol, 2015, 5: 930-940 CrossRef ADS Google Scholar

[52] Brayton R, Cong J. Electronic Design Automation: Past, Present, and Future. NSF Workshop Report, 2009. Google Scholar

[53] Hoyer J, Kohler R, Haase W. Up-Regulation of Pressure-activated Ca$^{2+}$-permeable Cation Channel in Intact Vascular Endothelium of Hypertensive Rats. Proc Natl Acad Sci USA, 1996, 93: 11253-11258 CrossRef ADS Google Scholar

[54] Brayton R, Cong J. NSF Workshop on EDA: Past, Present, and Future (Part 2). IEEE Des Test Comput, 2010, 27: 62-74 CrossRef Google Scholar

[55] Chen W, Bottoms W R. Heterogeneous integration Roadmap. In: Proceedings of International Conference on Electronics Packaging (ICEP), 2017. Google Scholar

[56] Hancock T M, Demmin J. Heterogeneous and 3D integration at DARPA. In: Proceedings of IEEE International 3D Systems Integration Conference, 2019. 27--29. Google Scholar

[57] Gutierrez-Aitken A, Scott D, Sato K, et al. Diverse accessible heterogeneous integration (DAHI) foundry at northrop grumman aerospace systems (NGAS). ECS Trans, 2017, 80: 125--134. Google Scholar

[58] Wu L S, Zhao Y, Shen H C. Heterogeneous integration of GaAs pHEMT and Si CMOS on the same chip. Chin Phys B, 2016, 25: 067306 CrossRef ADS Google Scholar

[59] Fitzgerald E A, Bulsara M T, Bai Y, et al. Monolithic III-V/Si integration. ECS Trans, 2009, 19: 345--350. Google Scholar

[60] Lin J, You T, Wang M. Efficient ion-slicing of InP thin film for Si-based hetero-integration. Nanotechnology, 2018, 29: 504002 CrossRef ADS Google Scholar

[61] Shi H, Huang K, Mu F. Realization of wafer-scale single-crystalline GaN film on CMOS-compatible Si(100) substrate by ion-cutting technique. Semicond Sci Technol, 2020, 35: 125004 CrossRef ADS Google Scholar

[62] Xu W H, Wang Y B, You T G, et al. First demonstration of waferscale heterogeneous integration of Ga$_2$O$_3$ MOSFETs on SiC and Si substrates by ion-cutting process. In: Proceedings of IEEE International Electron Devices Meeting (IEDM), 2019. Google Scholar

[63] Yan Y, Huang K, Zhou H. ACS Appl Electron Mater, 2019, 1: 1660-1666 CrossRef Google Scholar

[64] Al-Sarawi S F, Abbott D, Franzon P D. A review of 3-D packaging technology. IEEE Trans Comp Packag Manufact Technol B, 1998, 21: 2-14 CrossRef Google Scholar

[65] Tummala R R. Packaging: past, present and future. In: Proceedings of the 6th International Conference on Electronic Packaging Technology, 2005. Google Scholar

[66] Ulrich R K. Advanced Electronic Packaging. 2nd ed. Hoboken: John Wiley & Sons, 2006. Google Scholar

[67] Gambino J P, Adderly S A, Knickerbocker J U. An overview of through-silicon-via technology and manufacturing challenges. MicroElectron Eng, 2015, 135: 73-106 CrossRef Google Scholar

[68] Li T, Hou J, Yan J. Chiplet Heterogeneous Integration Technology-Status and Challenges. Electronics, 2020, 9: 670 CrossRef Google Scholar

[69] Prezioso M, Merrikh-Bayat F, Hoskins B D. Training and operation of an integrated neuromorphic network based on metal-oxide memristors. Nature, 2015, 521: 61-64 CrossRef ADS arXiv Google Scholar

[70] Chen W H, Li K X, Lin W Y, et al. A 65 nm 1 Mb nonvolatile computing-in-memory ReRAM macro with sub-16 ns multiply-and-accumulate for binary DNN AI edge processors. In: Proceedings of IEEE International Solid-State Circuits Conference (ISSCC), 2018. 494--496. Google Scholar

[71] Liu Q, Gao B, Yao P, et al. A fully integrated analog ReRAM based 78.4TOPS/W compute-in-memory chip with fully parallel MAC computing. In: Proceedings of IEEE International Solid-State Circuits Conference (ISSCC), 2020. 500--502. Google Scholar

[72] Yao P, Wu H, Gao B. Fully hardware-implemented memristor convolutional neural network. Nature, 2020, 577: 641-646 CrossRef ADS Google Scholar

[73] Jiang Z W, Yin S H, Seo J S, et al. XNOR-SRAM in-bitcell computing SRAM macro based on resistive computing mechanism. In: Proceedings of the on Great Lakes Symposium on VLSI, 2019. 417--422. Google Scholar

[74] Valavi H, Ramadge P J, Nestler E. A 64-Tile 2.4-Mb In-Memory-Computing CNN Accelerator Employing Charge-Domain Compute. IEEE J Solid-State Circuits, 2019, 54: 1789-1799 CrossRef ADS Google Scholar

[75] Chih Y D, Lee P H, Fujiwara H, et al. An 89TOPS/W and 16.3TOPS/mm$^2$ all-digital SRAM-based full-precision compute-in memory macro in 22 nm for machine-learning edge applications. In: Proceedings of IEEE International Solid-State Circuits Conference (ISSCC), 2021. 252--254. Google Scholar

[76] Seshadri V, Lee D, Mullins T, et al. Ambit: in-memory accelerator for bulk bitwise operations using commodity DRAM technology. In: Proceedings of the 50th Annual IEEE/ACM International Symposium on Microarchitecture, 2017. 273--287. Google Scholar

[77] Li S C, Niu D M, Malladi K, et al. DRISA: a DRAM-based reconfigurable in-situ accelerator. In: Proceedings of the 50th Annual IEEE/ACM International Symposium on Microarchitecture, 2017. 288--301. Google Scholar

[78] Tulevski G S, Franklin A D, Frank D. Toward High-Performance Digital Logic Technology with Carbon Nanotubes. ACS Nano, 2014, 8: 8730-8745 CrossRef Google Scholar

[79] Iijima S. Helical microtubules of graphitic carbon. Nature, 1991, 354: 56-58 CrossRef ADS Google Scholar

[80] Dürkop T, Getty S A, Cobas E. Extraordinary Mobility in Semiconducting Carbon Nanotubes. Nano Lett, 2004, 4: 35-39 CrossRef ADS Google Scholar

[81] Tans S J, Verschueren A R M, Dekker C. Room-temperature transistor based on a single carbon nanotube. Nature, 1998, 393: 49-52 CrossRef ADS Google Scholar

[82] Martel R, Schmidt T, Shea H R. Single- and multi-wall carbon nanotube field-effect transistors. Appl Phys Lett, 1998, 73: 2447-2449 CrossRef ADS Google Scholar

[83] Javey A, Guo J, Wang Q. Ballistic carbon nanotube field-effect transistors. Nature, 2003, 424: 654-657 CrossRef ADS Google Scholar

[84] Chen Z. An Integrated Logic Circuit Assembled on a Single Carbon Nanotube. Science, 2006, 311: 1735-1735 CrossRef Google Scholar

[85] Zhang Z, Liang X, Wang S. Doping-Free Fabrication of Carbon Nanotube Based Ballistic CMOS Devices and Circuits. Nano Lett, 2007, 7: 3603-3607 CrossRef ADS Google Scholar

[86] Zhang Z, Wang S, Wang Z. Almost Perfectly Symmetric SWCNT-Based CMOS Devices and Scaling. ACS Nano, 2009, 3: 3781-3787 CrossRef Google Scholar

[87] Qiu C, Zhang Z, Xiao M. Scaling carbon nanotube complementary transistors to 5-nm gate lengths. Science, 2017, 355: 271-276 CrossRef ADS Google Scholar

[88] Qiu C, Liu F, Xu L. Dirac-source field-effect transistors as energy-efficient, high-performance electronic switches. Science, 2018, 361: 387-392 CrossRef ADS Google Scholar

[89] Franklin A D. Electronics: The road to carbon nanotube transistors. Nature, 2013, 498: 443-444 CrossRef ADS Google Scholar

[90] Shulaker M M, Hills G, Patil N. Carbon nanotube computer. Nature, 2013, 501: 526-530 CrossRef ADS Google Scholar

[91] Liu L, Han J, Xu L. Aligned, high-density semiconducting carbon nanotube arrays for high-performance electronics. Science, 2020, 368: 850-856 CrossRef ADS Google Scholar

[92] Bishop M D, Hills G, Srimani T. Fabrication of carbon nanotube field-effect transistors in commercial silicon manufacturing facilities. Nat Electron, 2020, 3: 492-501 CrossRef Google Scholar

[93] Johnson E O. Physical limitation on frequency and power parameters of transistors. In: Proceedings of IRE International Convention Record, 1991. 295--302. Google Scholar

[94] Mishra U K, Parikh P, Yi-Feng Wu P. AlGaN/GaN HEMTs-an overview of device operation and applications. Proc IEEE, 2002, 90: 1022-1031 CrossRef Google Scholar

[95] Shen L, Heikman S, Moran B. AlGaN/AlN/GaN high-power microwave HEMT. IEEE Electron Device Lett, 2001, 22: 457-459 CrossRef ADS Google Scholar

[96] Sarazin N, Jardel O, Morvan E. X-band power characterisation of AlInN/AlN/GaN HEMT grown on SiC substrate. Electron Lett, 2007, 43: 1317-1318 CrossRef Google Scholar

[97] Chu R, Shen L, Fichtenbaum N. V-Gate GaN HEMTs for X-Band Power Applications. IEEE Electron Device Lett, 2008, 29: 974-976 CrossRef ADS Google Scholar

[98] Haifeng Sun , Alt A R, Benedickter H. 102-GHz AlInN/GaN HEMTs on Silicon With 2.5-W/mm Output Power at 10 GHz. IEEE Electron Device Lett, 2009, 30: 796-798 CrossRef ADS Google Scholar

[99] Chang C H, Hsu H T, Huang L C, et al. Fabrication of AlGaN/GaN high electron mobility transistors (HEMTs) on silicon substrate with slant field plates using deep-UV lithography featuring 5W/mm power density at X-band. In: Proceedings of Asia Pacific Microwave Conference, 2012. 941--943. Google Scholar

[100] Wu Y F, Saxler A, Moore M. 30-W/mm GaN HEMTs by Field Plate Optimization. IEEE Electron Device Lett, 2004, 25: 117-119 CrossRef ADS Google Scholar

[101] Tilak V, Green B, Kaper V. Influence of barrier thickness on the high-power performance of AlGaN/GaN HEMTs. IEEE Electron Device Lett, 2001, 22: 504-506 CrossRef ADS Google Scholar

[102] Shen L, Coffie R, Buttari D. High-Power Polarization-Engineered GaN/AlGaN/GaN HEMTs Without Surface Passivation. IEEE Electron Device Lett, 2004, 25: 7-9 CrossRef ADS Google Scholar

[103] Ikeda N, Niiyama Y, Kambayashi H. GaN Power Transistors on Si Substrates for Switching Applications. Proc IEEE, 2010, 98: 1151-1161 CrossRef Google Scholar

[104] Robert R S, Stewart E J, Freitag R, et al. The super-lattice castellated field effect transistor (SLCFET): a novel high performance transistor topology ideal for RF switching. In: Proceedings of IEEE International Electron Devices Meeting (IEDM), 2014. Google Scholar

[105] Medjdoub F, Herbecq N, Linge A, et al. High frequency high breakdown voltage GaN transistors. In: Proceedings of IEEE International Electron Devices Meeting (IEDM), 2015. Google Scholar

[106] Makiyama K, Ozaki S, Ohki T, et al. Collapse-free high power InAlGaN/GaN-HEMT with 3 W/mm at 96 GHz. In: Proceedings of IEEE International Electron Devices Meeting (IEDM), 2015. Google Scholar

[107] Romanczyk B, Guidry M, Wienecke S, et al. W-Band N-Polar GaN MISHEMTs with high power and record 27.8 efficiency at 94 GHz. In: Proceedings of IEEE International Electron Devices Meeting (IEDM), 2016. Google Scholar

[108] Then H W, Dasgupta S, Radosavljevic M, et al. 3D heterogeneous integration of high performance high-K metal gate GaN NMOS and Si PMOS transistors on 300 mm high-resistivity Si substrate for energy-efficient and compact power delivery, RF (5G and beyond) and SoC applications. In: Proceedings of IEEE International Electron Devices Meeting (IEDM), 2019. Google Scholar

[109] Han W T, Radosavljevic M, Jun K, et al. Advances in research on 300 mm Gallium Nitride-on-Si(111) NMOS transistor and silicon CMOS integration. In: Proceedings of IEEE International Electron Devices Meeting (IEDM), 2020. Google Scholar

[110] Dang K, Zhang J, Zhou H. Lateral GaN Schottky Barrier Diode for Wireless High-Power Transfer Application With High RF/DC Conversion Efficiency: From Circuit Construction and Device Technologies to System Demonstration. IEEE Trans Ind Electron, 2020, 67: 6597-6606 CrossRef Google Scholar

[111] Dang K, Zhang J, Zhou H. A 5.8-GHz High-Power and High-Efficiency Rectifier Circuit With Lateral GaN Schottky Diode for Wireless Power Transfer. IEEE Trans Power Electron, 2020, 35: 2247-2252 CrossRef ADS Google Scholar

[112] Zhang T, Zhang J, Zhou H. A 1.9 kV/2.61 m?・cm2 Lateral GaN Schottky Barrier Diode on Silicon Substrate with Tungsten Anode and Low Turn-On Voltage of 0.35 V. IEEE Electron Device Lett, 2018, : 1-1 CrossRef Google Scholar

[113] Zhang T, Zhang J, Zhou H. High-performance lateral GaN Schottky barrier diode on silicon substrate with low turn-on voltage of 0.31 V, high breakdown voltage of 2.65 kV and high-power figure-of-merit of 2.65 GW cm$^{-2}$. Appl Phys Express, 2019, 12: 046502 CrossRef ADS Google Scholar

[114] Zhang T, Zhang J, Xu S. A > 3 kV/2.94 m Omega* cm2 and Low Leakage Current With Low Turn-On Voltage Lateral GaN Schottky Barrier Diode on Silicon Substrate With Anode Engineering Technique. IEEE Electron Device Lett, 2019, 40: 1583-1586 CrossRef ADS Google Scholar

[115] Zhang T, Zhang J, Zhang W. Investigation of an AlGaN-channel Schottky barrier diode on a silicon substrate with a molybdenum anode. Semicond Sci Technol, 2021, 36: 044003 CrossRef Google Scholar

[116] Fu H, Baranowski I, Huang X. Demonstration of AlN Schottky Barrier Diodes With Blocking Voltage Over 1 kV. IEEE Electron Device Lett, 2017, 38: 1286-1289 CrossRef ADS Google Scholar

[117] Borisov B, Kuryatkov V, Kudryavtsev Y. Si-doped AlxGa1?xN(0.56??1) layers grown by molecular beam epitaxy with ammonia. Appl Phys Lett, 2005, 87: 132106 CrossRef ADS Google Scholar

[118] Zhang Y, Zhang J, Liu Z. Demonstration of a 2 kV Al0.85Ga0.15N Schottky Barrier Diode With Improved On-Current and Ideality Factor. IEEE Electron Device Lett, 2020, 41: 457-460 CrossRef ADS Google Scholar

[119] Yang C H, Leon R C C, Hwang J C C. Operation of a silicon quantum processor unit cell above one kelvin. Nature, 2020, 580: 350-354 CrossRef ADS Google Scholar

[120] Petit L, Eenink H G J, Russ M. Universal quantum logic in hot silicon qubits. Nature, 2020, 580: 355-359 CrossRef ADS arXiv Google Scholar

[121] Yoneda J, Takeda K, Otsuka T, et al. A quantum-dot spin qubit with coherence limited by charge noise and fidelity higher than 99.9. Google Scholar

[122] Turetsky M R, Abbott B W, Jones M C. Permafrost collapse is accelerating carbon release. Nature, 2019, 569: 32-34 CrossRef ADS Google Scholar

[123] Takeda K, Noiri A, Nakajima T. Quantum tomography of an entangled three-spin state in silicon. 2020,. arXiv Google Scholar

[124] Yoneda J, Takeda K, Noiri A. Quantum non-demolition readout of an electron spin in silicon. Nat Commun, 2020, 11: 1144 CrossRef ADS arXiv Google Scholar

[125] Pillarisetty R, George H C, Watson T F, et al. High volume electrical characterization of semiconductor qubits. In: Proceedings of IEEE International Electron Devices Meeting (IEDM), 2019. 7--11. Google Scholar

[126] Franceschi S D, Hutin L, Maurand R, et al. SOI technology for quantum information processing. In: Proceedings of IEEE International Electron Devices Meeting (IEDM), 2016. 3--7. Google Scholar

[127] Guevel L L, Billiot G, Jehl X, et al. A 110 mK 295$\mu$W 28 nm FDSOI CMOS quantum integrated circuit with a 2.8 GHz excitation and nA current sensing of an on-chip double quantum dot. In: Proceedings of IEEE International Solid-State Circuits Conference (ISSCC), 2020. 306--308. Google Scholar

[128] Gupta S, Navaraj W T, Lorenzelli L, et al. Ultra-thin chips for high-performance flexible electronics. NPJ Flexible Electron, 2018, 2: 1--17. Google Scholar

[129] Huang S, Liu Y, Zhao Y. Flexible Electronics: Stretchable Electrodes and Their Future. Adv Funct Mater, 2019, 29: 1805924 CrossRef Google Scholar

[130] Son D, Kang J, Vardoulis O. An integrated self-healable electronic skin system fabricated via dynamic reconstruction of a nanostructured conducting network. Nat Nanotech, 2018, 13: 1057-1065 CrossRef ADS Google Scholar

[131] Song E, Li J, Won S M. Materials for flexible bioelectronic systems as chronic neural interfaces. Nat Mater, 2020, 19: 590-603 CrossRef ADS Google Scholar

[132] Matsuhisa N, Inoue D, Zalar P. Printable elastic conductors by in situ formation of silver nanoparticles from silver flakes. Nat Mater, 2017, 16: 834-840 CrossRef ADS Google Scholar

[133] Wang N, Cheng L, Ge R. Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells. Nat Photon, 2016, 10: 699-704 CrossRef ADS Google Scholar

[134] Cao Y, Wang N, Tian H. Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures. Nature, 2018, 562: 249-253 CrossRef ADS Google Scholar

[135] Gu L, Shi H, Bian L. Colour-tunable ultra-long organic phosphorescence of a single-component molecular crystal. Nat Photonics, 2019, 13: 406-411 CrossRef ADS Google Scholar

[136] Ren H, Yu S, Chao L. Efficient and stable Ruddlesden-Popper perovskite solar cell with tailored interlayer molecular interaction. Nat Photonics, 2020, 14: 154-163 CrossRef ADS Google Scholar

[137] Liang C, Gu H, Xia Y, et al. Two-dimensional Ruddlesden-Popper layered perovskite solar cells based on phase-pure thin-films. Nat Energy, 2020, 6: 38--45. Google Scholar

[138] Bogaerts W, Pérez D, Capmany J. Programmable photonic circuits. Nature, 2020, 586: 207-216 CrossRef ADS Google Scholar

[139] Smit M, Williams K, van der Tol J. Past, present, and future of InP-based photonic integration. APL Photonics, 2019, 4: 050901. Google Scholar

[140] Hoefler G E, Zhou Y, Anagnosti M. Foundry Development of System-On-Chip InP-Based Photonic Integrated Circuits. IEEE J Sel Top Quantum Electron, 2019, 25: 1-17 CrossRef ADS Google Scholar

[141] Billah M R, Blaicher M, Hoose T. Hybrid integration of silicon photonics circuits and InP lasers by photonic wire bonding. Optica, 2018, 5: 876 CrossRef ADS Google Scholar

[142] You J, Luo Y, Yang J. Hybrid/Integrated Silicon Photonics Based on 2D Materials in Optical Communication Nanosystems. Laser Photonics Rev, 2020, 14: 2000239 CrossRef ADS Google Scholar

[143] Wang C, Zhang M, Chen X. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature, 2018, 562: 101-104 CrossRef ADS Google Scholar

[144] Wang C, Zhang M, Yu M. Monolithic lithium niobate photonic circuits for Kerr frequency comb generation and modulation. Nat Commun, 2019, 10: 978 CrossRef ADS arXiv Google Scholar

[145] Li M, Ling J, He Y. Lithium niobate photonic-crystal electro-optic modulator. Nat Commun, 2020, 11: 4123 CrossRef ADS arXiv Google Scholar

[146] Lin H, Song Y, Huang Y. Chalcogenide glass-on-graphene photonics. Nat Photon, 2017, 11: 798-805 CrossRef ADS arXiv Google Scholar

[147] Shen W, Zeng P, Yang Z. Chalcogenide glass photonic integration for improved 2??μm optical interconnection. Photon Res, 2020, 8: 1484-1490 CrossRef Google Scholar

[148] Romagnoli M, Sorianello V, Midrio M. Graphene-based integrated photonics for next-generation datacom and telecom. Nat Rev Mater, 2018, 3: 392-414 CrossRef ADS arXiv Google Scholar

[149] Guo X, He A, Su Y. Recent advances of heterogeneously integrated III-V laser on Si. J Semicond, 2019, 40: 101304 CrossRef ADS Google Scholar

[150] He A, Guo X, Wang H. Ultra-Compact Coupling Structures for Heterogeneously Integrated Silicon Lasers. J Lightwave Technol, 2020, : 1-1 CrossRef Google Scholar

[151] He M, Xu M, Ren Y. High-performance hybrid silicon and lithium niobate Mach-Zehnder modulators for 100 Gbit s$^{-1}$ and beyond. Nat Photonics, 2019, 13: 359-364 CrossRef ADS arXiv Google Scholar

[152] Gao A, Lai J, Wang Y. Observation of ballistic avalanche phenomena in nanoscale vertical InSe/BP heterostructures. Nat Nanotechnol, 2019, 14: 217-222 CrossRef ADS arXiv Google Scholar

[153] 徐至展 . Development trends in silicon photonics. Chin Opt Lett, 2013, 11: 012501 CrossRef ADS Google Scholar

[154] Zhou Z, Yin B, Michel J. On-chip light sources for silicon photonics. Light Sci Appl, 2015, 4: e358-e358 CrossRef ADS Google Scholar

[155] Chen X, Milosevic M M, Stankovic S. The Emergence of Silicon Photonics as a Flexible Technology Platform. Proc IEEE, 2018, 106: 2101-2116 CrossRef Google Scholar

[156] Su Y, Zhang Y, Qiu C. Silicon Photonic Platform for Passive Waveguide Devices: Materials, Fabrication, and Applications. Adv Mater Technol, 2020, 5: 1901153 CrossRef Google Scholar

[157] Driscoll J B, Doussiere P, Islam S, et al. First 400G 8-channel CWDM silicon photonic integrated transmitter. In: Proceedings of the 15th International Conference on Group IV Photonics (GFP), 2018. Google Scholar

[158] Fathololoumi S, Nguyen K, Mahalingam H, et al. 1.6 Tbps silicon photonics integrated circuit for co-packaged optical-IO switch applications. In: Proceedings of Optical Fiber Communication Conference, 2020. Google Scholar

[159] Qiang X, Zhou X, Wang J. Large-scale silicon quantum photonics implementing arbitrary two-qubit processing. Nat Photon, 2018, 12: 534-539 CrossRef ADS arXiv Google Scholar

[160] Shen Y, Harris N C, Skirlo S, et al. Deep learning with coherent nanophotonic circuits. Nat Photonics, 2017, 11: 189-190, doi: 10.1109/PHOSST.2017.8012714. Google Scholar

[161] Poulton C V, Yaacobi A, Cole D B. Coherent solid-state LIDAR with silicon photonic optical phased arrays. Opt Lett, 2017, 42: 4091-4094 CrossRef ADS Google Scholar

[162] Wade M, Anderson E, Ardalan S. TeraPHY: A Chiplet Technology for Low-Power, High-Bandwidth In-Package Optical I/O. IEEE Micro, 2020, 40: 63-71 CrossRef Google Scholar

[163] Capmany J, Novak D. Microwave photonics combines two worlds. Nat Photon, 2007, 1: 319-330 CrossRef ADS Google Scholar

[164] Yao J. Microwave Photonics. J Lightwave Technol, 2009, 27: 314-335 CrossRef ADS Google Scholar

[165] Marpaung D, Yao J, Capmany J. Integrated microwave photonics. Nat Photon, 2019, 13: 80-90 CrossRef ADS Google Scholar

[166] Shen B, Chang L, Liu J. Integrated turnkey soliton microcombs. Nature, 2020, 582: 365-369 CrossRef ADS Google Scholar

[167] Liu W, Li M, Guzzon R S. A fully reconfigurable photonic integrated signal processor. Nat Photon, 2016, 10: 190-195 CrossRef ADS Google Scholar

[168] Grootjans R, Roeloffzen C, Taddei C, et al. Broadband continuously tuneable delay microwave photonic beamformer for phased array antennas. In: Proceedings of the 49th European Microwave Conference (EuMC), 2019. 812--815. Google Scholar

[169] Hao T, Tang J, Domenech D. Toward Monolithic Integration of OEOs: From Systems to Chips. J Lightwave Technol, 2018, 36: 4565-4582 CrossRef ADS Google Scholar

[170] Li S, Cui Z, Ye X. Chip-Based Microwave-Photonic Radar for High-Resolution Imaging. Laser Photonics Rev, 2020, 14: 1900239 CrossRef ADS Google Scholar

[171] Zou X, Bai W, Chen W. Microwave Photonics for Featured Applications in High-Speed Railways: Communications, Detection, and Sensing. J Lightwave Technol, 2018, 36: 4337-4346 CrossRef ADS Google Scholar

[172] Zou X, Zou F, Cao Z. A Multifunctional Photonic Integrated Circuit for Diverse Microwave Signal Generation, Transmission, and Processing. Laser Photonics Rev, 2019, 13: 1800240 CrossRef ADS arXiv Google Scholar

[173] Roy K, Jaiswal A, Panda P. Towards spike-based machine intelligence with neuromorphic computing. Nature, 2019, 575: 607-617 CrossRef ADS Google Scholar

[174] Prucnal P R, Shastri B J, Ferreira de Lima T. Recent progress in semiconductor excitable lasers for photonic spike processing. Adv Opt Photon, 2016, 8: 228-299 CrossRef ADS Google Scholar

[175] Shastri B J, Tait A N, Lima T D, et al. Principles of neuromorphic photonics, 2018,. arXiv Google Scholar

[176] Peng H T, Nahmias M A, de Lima T F. Neuromorphic Photonic Integrated Circuits. IEEE J Sel Top Quantum Electron, 2018, 24: 1-15 CrossRef ADS Google Scholar

[177] Robertson J, Wade E, Kopp Y. Toward Neuromorphic Photonic Networks of Ultrafast Spiking Laser Neurons. IEEE J Sel Top Quantum Electron, 2020, 26: 1-15 CrossRef ADS Google Scholar

[178] Xiang S, Han Y, Song Z. A review: Photonics devices, architectures, and algorithms for optical neural computing. J Semicond, 2021, 42: 023105 CrossRef Google Scholar

[179] Xiang S, Wen A, Pan W. Emulation of Spiking Response and Spiking Frequency Property in VCSEL-Based Photonic Neuron. IEEE Photonics J, 2016, 8: 1-9 CrossRef ADS Google Scholar

[180] Xiang S, Zhang Y, Guo X. Photonic Generation of Neuron-Like Dynamics Using VCSELs Subject to Double Polarized Optical Injection. J Lightwave Technol, 2018, 36: 4227-4234 CrossRef ADS Google Scholar

[181] Xiang J, Torchy A, Guo X. All-Optical Spiking Neuron Based on Passive Microresonator. J Lightwave Technol, 2020, 38: 4019-4029 CrossRef ADS arXiv Google Scholar

[182] Ren Q, Zhang Y, Wang R. Optical spike-timing-dependent plasticity with weight-dependent learning window and reward modulation. Opt Express, 2015, 23: 25247 CrossRef ADS Google Scholar

[183] Xiang S, Han Y, Guo X. Real-time optical spike-timing dependent plasticity in a single VCSEL with dual-polarized pulsed optical injection. Sci China Inf Sci, 2020, 63: 160405 CrossRef Google Scholar

[184] Zhou H, Zhao Y, Xu G. Chip-Scale Optical Matrix Computation for PageRank Algorithm. IEEE J Sel Top Quantum Electron, 2020, 26: 1-10 CrossRef ADS Google Scholar

[185] Zhou H, Zhao Y, Wei Y. All-in-one silicon photonic polarization processor. Nanophotonics, 2019, 8: 2257-2267 CrossRef ADS Google Scholar

[186] Ríos C, Youngblood N, Cheng Z. In-memory computing on a photonic platform. Sci Adv, 2019, 5: eaau5759 CrossRef ADS arXiv Google Scholar

[187] Xu S, Wang J, Wang R. High-accuracy optical convolution unit architecture for convolutional neural networks by cascaded acousto-optical modulator arrays. Opt Express, 2019, 27: 19778 CrossRef ADS Google Scholar

[188] Xu S, Wang J, Zou W. Optical patching scheme for optical convolutional neural networks based on wavelength-division multiplexing and optical delay lines. Opt Lett, 2020, 45: 3689-3692 CrossRef ADS Google Scholar

[189] Vandoorne K, Mechet P, Van Vaerenbergh T. Experimental demonstration of reservoir computing on a silicon photonics chip. Nat Commun, 2014, 5: 3541 CrossRef ADS Google Scholar

[190] Guo X X, Xiang S Y, Zhang Y H. Polarization Multiplexing Reservoir Computing Based on a VCSEL With Polarized Optical Feedback. IEEE J Sel Top Quantum Electron, 2020, 26: 1-9 CrossRef ADS Google Scholar

[191] Xiang S, Zhang Y, Gong J. STDP-Based Unsupervised Spike Pattern Learning in a Photonic Spiking Neural Network With VCSELs and VCSOAs. IEEE J Sel Top Quantum Electron, 2019, 25: 1-9 CrossRef ADS Google Scholar

[192] Xiang S, Ren Z, Song Z. Computing Primitive of Fully VCSEL-Based All-Optical Spiking Neural Network for Supervised Learning and Pattern Classification. IEEE Trans Neural Netw Learning Syst, 2020, : 1-12 CrossRef Google Scholar

[193] Diez-Ardanuy C, Greaves J, Munro K R. A cluster of palmitoylated cysteines are essential for aggregation of cysteine-string protein mutants that cause neuronal ceroid lipofuscinosis. Sci Rep, 2017, 7: 10 CrossRef ADS Google Scholar

[194] Lin X, Rivenson Y, Yardimci N T. All-optical machine learning using diffractive deep neural networks. Science, 2018, 361: 1004-1008 CrossRef ADS arXiv Google Scholar

[195] Feldmann J, Youngblood N, Wright C D. All-optical spiking neurosynaptic networks with self-learning capabilities. Nature, 2019, 569: 208-214 CrossRef ADS Google Scholar

[196] Wetzstein G, Ozcan A, Gigan S. Inference in artificial intelligence with deep optics and photonics. Nature, 2020, 588: 39-47 CrossRef ADS Google Scholar

[197] Feldmann J, Youngblood N, Karpov M. Parallel convolutional processing using an integrated photonic tensor core. Nature, 2021, 589: 52-58 CrossRef ADS arXiv Google Scholar

[198] Xu X, Tan M, Corcoran B. 11 TOPS photonic convolutional accelerator for optical neural networks. Nature, 2021, 589: 44-51 CrossRef ADS arXiv Google Scholar

[199] Wu H, Dai Q. Artificial intelligence accelerated by light. Nature, 2021, 589: 25-26 CrossRef ADS Google Scholar

[200] Morkoc H, Mohammad S N. High-Luminosity Blue and Blue-Green Gallium Nitride Light-Emitting Diodes. Science, 1995, 267: 51-55 CrossRef ADS Google Scholar

[201] Khan A, Balakrishnan K, Katona T. Ultraviolet light-emitting diodes based on group three nitrides. Nat Photon, 2008, 2: 77-84 CrossRef ADS Google Scholar

[202] Jia Y, Ning J, Zhang J. Transferable GaN Enabled by Selective Nucleation of AlN on Graphene for High?Brightness Violet Light?Emitting Diodes. Adv Opt Mater, 2020, 8: 1901632 CrossRef Google Scholar

[203] Peng R, Hao Y, Meng X. Study on Dislocation Annihilation Mechanism of the High-Quality GaN Grown on Sputtered AlN/PSS and Its Application in Green Light-Emitting Diodes. IEEE Trans Electron Devices, 2019, 66: 2243-2248 CrossRef ADS Google Scholar

[204] Liu L, Yang C, Patanè A. High-detectivity ultraviolet photodetectors based on laterally mesoporous GaN. Nanoscale, 2017, 9: 8142-8148 CrossRef Google Scholar

[205] Li J, Xi X, Li X. Ultra?High and Fast Ultraviolet Response Photodetectors Based on Lateral Porous GaN/Ag Nanowires Composite Nanostructure. Adv Opt Mater, 2020, 8: 1902162 CrossRef Google Scholar

[206] Li J, Xi X, Lin S. Ultrahigh Sensitivity Graphene/Nanoporous GaN Ultraviolet Photodetectors. ACS Appl Mater Interfaces, 2020, 12: 11965-11971 CrossRef Google Scholar

[207] Noda S, Fujita M. Light-emitting diodes: Photonic crystal efficiency boost. Nat Photon, 2009, 3: 129-130 CrossRef ADS Google Scholar

[208] Zhang C, Park S H, Chen D. Mesoporous GaN for Photonic Engineering-Highly Reflective GaN Mirrors as an Example. ACS Photonics, 2015, 2: 980-986 CrossRef Google Scholar

[209] Lee S M, Gong S H, Kang J H. Optically pumped GaN vertical cavity surface emitting laser with high index-contrast nanoporous distributed Bragg reflector. Opt Express, 2015, 23: 11023-11030 CrossRef ADS Google Scholar

[210] Gao X, Shi Z, Jiang Y. Monolithic III-nitride photonic integration toward multifunctional devices. Opt Lett, 2017, 42: 4853-4856 CrossRef ADS Google Scholar

[211] Li K H, Fu W Y, Cheung Y F. Monolithically integrated InGaN/GaN light-emitting diodes, photodetectors, and waveguides on Si substrate. Optica, 2018, 5: 564-569 CrossRef ADS Google Scholar

[212] Liu Z J, Huang T, Ma J. Monolithic Integration of AlGaN/GaN HEMT on LED by MOCVD. IEEE Electron Device Lett, 2014, 35: 330-332 CrossRef ADS Google Scholar

[213] Liu C, Cai Y F, Zou X B, et al. Low-leakage high-breakdown laterally integrated HEMT-LED via n-GaN electrode. IEEE Photon Tech Lett, 2016, 28: 1130--1133. Google Scholar

[214] Lu X, Liu C, Jiang H. Monolithic integration of enhancement-mode vertical driving transistorson a standard InGaN/GaN light emitting diode structure. Appl Phys Lett, 2016, 109: 053504 CrossRef ADS Google Scholar

[215] Cai Y, Gong Y, Bai J. Controllable Uniform Green Light Emitters Enabled by Circular HEMT-LED Devices. IEEE Photonics J, 2018, 10: 1-7 CrossRef ADS Google Scholar

[216] Tsuchiyama K, Yamane K, Utsunomiya S. Monolithic integration of Si-MOSFET and GaN-LED using Si/SiO$_{2}$/GaN-LED wafer. Appl Phys Express, 2016, 9: 104101 CrossRef ADS Google Scholar

[217] Gao X, Yuan J, Yang Y. A 30 Mbps in-plane full-duplex light communication using a monolithic GaN photonic circuit. Semicond Sci Technol, 2017, 32: 075002 CrossRef ADS Google Scholar

[218] Li K H, Cheung Y F, Fu W Y. Monolithic Integration of GaN-on-Sapphire Light-Emitting Diodes, Photodetectors, and Waveguides. IEEE J Sel Top Quantum Electron, 2018, 24: 1-6 CrossRef ADS Google Scholar

[219] Chun H, Rajbhandari S, Faulkner G. LED Based Wavelength Division Multiplexed 10 Gb/s Visible Light Communications. J Lightwave Technol, 2016, 34: 3047-3052 CrossRef ADS Google Scholar

[220] Rajbhandari S, McKendry J J D, Herrnsdorf J. A review of gallium nitride LEDs for multi-gigabit-per-second visible light data communications. Semicond Sci Technol, 2017, 32: 023001 CrossRef ADS Google Scholar

[221] Zhao L X, Zhu S C, Wu C H. GaN-based LEDs for light communication. Sci China-Phys Mech Astron, 2016, 59: 107301 CrossRef ADS Google Scholar

[222] Zhu S, Lin S, Li J. Influence of quantum confined Stark effect and carrier localization effect on modulation bandwidth for GaN-based LEDs. Appl Phys Lett, 2017, 111: 171105 CrossRef ADS Google Scholar

[223] Rashidi A, Monavarian M, Aragon A. Nonpolar ${m}$ -Plane InGaN/GaN Micro-Scale Light-Emitting Diode With 1.5 GHz Modulation Bandwidth. IEEE Electron Device Lett, 2018, 39: 520-523 CrossRef ADS Google Scholar

[224] Cao H, Lin S, Ma Z. Color Converted White Light-Emitting Diodes With 637.6 MHz Modulation Bandwidth. IEEE Electron Device Lett, 2019, 40: 267-270 CrossRef ADS Google Scholar

[225] Vahala K J. Optical microcavities. Nature, 2003, 424: 839-846 CrossRef ADS Google Scholar

[226] Feng M, Wang J, Zhou R. On-Chip Integration of GaN-Based Laser, Modulator, and Photodetector Grown on Si. IEEE J Sel Top Quantum Electron, 2018, 24: 1-5 CrossRef ADS Google Scholar

[227] Tamboli A C, Haberer E D, Sharma R. Room-temperature continuous-wave lasing in GaN/InGaN microdisks. Nat Photon, 2007, 1: 61-64 CrossRef ADS Google Scholar

[228] Simeonov D, Feltin E, Bühlmann H J. Blue lasing at room temperature in high quality factor GaN /AlInN microdisks with InGaN quantum wells. Appl Phys Lett, 2007, 90: 061106 CrossRef ADS Google Scholar

[229] Tabataba-Vakili F, Doyennette L, Brimont C. Blue Microlasers Integrated on a Photonic Platform on Silicon. ACS Photonics, 2018, 5: 3643-3648 CrossRef Google Scholar

[230] Tabataba-Vakili F, Rennesson S, Damilano B. III-nitride on silicon electrically injected microrings for nanophotonic circuits. Opt Express, 2019, 27: 11800-11808 CrossRef ADS arXiv Google Scholar

[231] Yang C, Liu L, Zhu S. GaN with Laterally Aligned Nanopores To Enhance the Water Splitting. J Phys Chem C, 2017, 121: 7331-7336 CrossRef Google Scholar

[232] Li J, Yang C, Liu L. High Responsivity and Wavelength Selectivity of GaN?Based Resonant Cavity Photodiodes. Adv Opt Mater, 2020, 8: 1901276 CrossRef Google Scholar

  • Figure 1

    (Color online) Representative applications of ICs.

  • Figure 2

    (Color online) A roadmap for IC development in the post Moore's era [11].

  • Figure 3

    (Color online) Organization of this paper.

  • Figure 4

    (Color online) The key technology challenges for GAA transistor implementation.

  • Figure 5

    (Color online) (a)–(c) Two-terminal NVM devices. (a) An RRAM device in the LRS where the CF comprises a large concentration of defects for example oxygen vacancies in metal oxides or metallic ions injected from the electrodes. (b) A mushroom-type PCM device in the HRS state where the amorphous phase blocks the bottom electrode. (c) An STT-MRAM device with two ferromagnetic layers (pinned and free) separated by a tunnel oxide layer. (d)–(f) Three-terminal NVM devices: flash memory (d), FeRAM (e), and ECRAM (f). The FeRAM device (e) utilizes the partial polarization switching within the ferroelectric gate oxide to change conductance. The conductance tuning of an ECRAM device (f) is based on the motion of Li ions between the solid-state electrolyte and tungsten oxide. Reprinted with permission from [23]@Copyright 2020 Nature Publishing Group.

  • Figure 6

    (Color online) The key ICs of high-performance electronic and communication systems.

  • Figure 7

    (Color online) (a) Aerospace level chip layout; (b) chip layout of RISCV; (c) signal processing chip layout.

  • Figure 8

    (Color online) Some examples of heterogeneous integration chips. (a) CMOS to III-V chiplet integration [57]@Copyright 2017 IOP Publishing. (b) GaAs pHEMT epi-layer lift-off and transferred on the silicon CMOS circuit [58]@Copyright 2016 IOP Publishing. (c) InP HBT/Si CMOS-based heterogeneous integrated circuit [59]@Copyright 2009 IOP Publishing. (d) Wafer-scale XOI heterogeneous integration materials fabricated by ion-cutting technique.

  • Figure 9

    (Color online) AI theory and chips. (a) The diagram of the basic structure of ANN; (b) the memristor array used for VMM; (c) the history of the memristor chips [69-72].

  • Figure 10

    (Color online) The development timeline of CNT FET and CMOS ICs.

  • Figure 11

    (Color online) Development of GaN based devices in high-power and high-frequency areas.

  • Figure 12

    (Color online) Comparison of GaN and GaAs MMIC in size and power density.

  • Figure 13

    (Color online) (a) Cross-sectional schematic view of the lateral GaN-on-SiC SBD; (b) microscopy image of the fabricated lateral GaN SBD; (c) conversion efficiency versus input power of some state-of-the-art rectifier circuit with Si, GaAs, and vertical GaN SBDs. The groove-type lateral GaN SBD presents the best combination of $\eta$RF/DC and Pin [111]@Copyright 2020 IEEE.

  • Figure 14

    (Color online) Research trends of major research groups in semiconductor quantum computing. SET: single electron transistor. EDSR: electric-dipole spin resonance; QD: quantum dot; cQED: circuit quantum electrodynamics; DQD: double quantum dot; ST: singlet-triplet; HEMT: high electron mobility transistor; RB: randomized benchmarking; PSB: Pauli spin blockade; EO: exchange only.

  • Figure 15

    (Color online) The technical advantages, application fields, and future scenes of FECs [128]@Copyright 2018 Springer Nature.

  • Figure 16

    (Color online) Selected functional units implemented in integrated microwave photonics. (a) Low-noise integrated optical frequency combs [166]@Copyright 2020 Nature Publishing Group. (b) Integrated programmable signal processor [167]@Copyright 2016 Nature Publishing Group. (c) Integrated microwave photonic beamformer [168]@Copyright 2019 IEEE. (d) Integrated OEO [169]@Copyright 2018 IEEE. (e) Chip-based microwave-photonic radar for high-resolution imaging [170]@Copyright 2020 John Wiley & Sons. (f) Multifunctional photonic integrated circuit [171]@Copyright 2019 John Wiley & Sons.

  • Figure 17

    (Color online) Timeline of advances in photonics neuromorphic [174,178]. VCSEL: vertical-cavity surface-emitting lasers; VCSEL-SA: vertical-cavity surface-emitting lasers with embedded saturable; SOA: semiconductor optical amplifier; EAM: electro-absorption modulator; MRR: microring resonator; MZI: Mach-Zehnder interferometer; VCSOA: vertical-cavity semiconductor optical amplifier; DFB: distributed feedback laser; WTA: winner-take-all.

  • Figure 18

    (Color online) Current typical schematic of GaN-based structure for integration. (a) Schematic of monolithically integrated GaN-based MOSFET-LED device and equivalent circuit diagram [214]@Copyright 2016 American Institute of Physics. (b) Schematic of monolithic GaN-based integration of light source, waveguide, ring resonator [217]@Copyright 2017 IOP Publishing. (c) Schematic diagrams of the integration of LEDs, photodetectors, and waveguides [211]. (d) Microphotographs of the integration of LEDs, photodetectors, and waveguides [211]. (e) Schematic and optical image of GaN-based photodiode with a lateral porous GaN DBR [232]@Copyright 2020 John Wiley and Sons. (f) Schematic of optoelectronic integration using WGM GaN-based microdisk lasers.

  • Table 1  

    Table 1Main parameters of GaN and other materials [4,5]

    SiGaAsH-SiCGaNDiamond
    $~{E_g}$ (eV)1.11.423.263.395.45
    ${n_i}$ (cm$^{-3}$)$\rm~1.5\times10^{10}$$\rm~1.5\times10^6$$\rm~8.2\times10^{-9}$$\rm~1.9\times10^{-10}$$\rm~1.6\times10^{-27}$
    ${\varepsilon_r}$11.813.1109.05.5
    ${\mu_n}$ (cm$^2$/Vs)13508500700parbox[t]2cm
    1200 (bulk)
    2000 (2DEG)1900
    ${v_{\rm~sat}}$ (10$^7$cm/s)1.01.02.02.52.7
    ${E_{\rm~br}}$ (MV/cm)0.30.43.03.35.6
    ${\Theta}$ (W/cm$\cdot$K)1.50.433.3–4.51.320
    ${{\rm~JM}=\frac{E_{\rm~br}v_{\rm~sat}}{2\pi}}$1.50.433.3–4.51.320
  • Table 2  

    Table 2Comparison between the different photonic integration technologies$^{\rm~a)}$

    Optical function InP SOI $\rm~Si_3N_4/SiO_2$LNOI
    Passive waveguide$\star$ $\star$ $\star$ $\star$ $\star$ $\star$ $\star$ $\star$ $\star$
    Laser/amplifier$\star$ $\star$ $\star$
    Modulator$\star$ $\star$ $\star$ $\star$ $\star$ $\star$ $\star$ $\star$
    Switch$\star$ $\star$ $\star$ $\star$ $\star$ $\star$ $\star$ $\star$
    Detector$\star$ $\star$ $\star$ $\star$ $\star$
    Fiber coupling$\star$ $\star$ $\star$ $\star$ $\star$
    Integration scale$\star$ $\star$ $\star$ $\star$ $\star$ $\star$ $\star$ $\star$ $\star$ $\star$ $\star$

    a) $\star$$\star$$\star$ represents very good; – represents challenging/no.

qqqq

Contact and support