logo

SCIENCE CHINA Information Sciences, Volume 64 , Issue 10 : 200303(2021) https://doi.org/10.1007/s11432-020-3253-7

Optical true time delay pool-based beamforming and limited feedback for reconfigurable intelligent surface-empowered cloud radio access networks

More info
  • ReceivedNov 30, 2020
  • AcceptedApr 25, 2021
  • PublishedSep 7, 2021

Abstract


References

[1] Li X, Yu J, Chang G K. Photonics-Assisted Technologies for Extreme Broadband 5G Wireless Communications. J Lightwave Technol, 2019, 37: 2851-2865 CrossRef ADS Google Scholar

[2] Lien S Y, Shieh S L, Huang Y. 5G New Radio: Waveform, Frame Structure, Multiple Access, and Initial Access. IEEE Commun Mag, 2017, 55: 64-71 CrossRef Google Scholar

[3] Kutty S, Sen D. Beamforming for Millimeter Wave Communications: An Inclusive Survey. IEEE Commun Surv Tutorials, 2016, 18: 949-973 CrossRef Google Scholar

[4] Zhang P, Yi C, Yang B. In-building coverage of millimeter-wave wireless networks from channel measurement and modeling perspectives. Sci China Inf Sci, 2020, 63: 180301 CrossRef Google Scholar

[5] Bai T, Heath R W. Coverage and Rate Analysis for Millimeter-Wave Cellular Networks. IEEE Trans Wireless Commun, 2015, 14: 1100-1114 CrossRef Google Scholar

[6] Li L, Wang D, Niu X. mmWave communications for 5G: implementation challenges and advances. Sci China Inf Sci, 2018, 61: 021301 CrossRef Google Scholar

[7] Sung M, Kim J, Kim E S. RoF-Based Radio Access Network for 5G Mobile Communication Systems in 28 GHz Millimeter-Wave. J Lightwave Technol, 2020, 38: 409-420 CrossRef ADS Google Scholar

[8] Kalfas G, Vagionas C, Antonopoulos A. Next Generation Fiber-Wireless Fronthaul for 5G mmWave Networks. IEEE Commun Mag, 2019, 57: 138-144 CrossRef Google Scholar

[9] Alimi I A, Teixeira A L, Monteiro P P. Toward an Efficient C-RAN Optical Fronthaul for the Future Networks: A Tutorial on Technologies, Requirements, Challenges, and Solutions. IEEE Commun Surv Tutorials, 2018, 20: 708-769 CrossRef Google Scholar

[10] Li C, Song K, Wang D. Optimal remote radio head selection for cloud radio access networks. Sci China Inf Sci, 2016, 59: 102315 CrossRef Google Scholar

[11] Common public radio interface: eCPRI interface specification. 2019 $[2019-05-10]$. http://www.cpri.info/downloads/eCPRI_v_2.0_2019_05_10c.pdf. Google Scholar

[12] Wu C Y, Li H, Caytan O. Distributed Multi-User MIMO Transmission Using Real-Time Sigma-Delta-Over-Fiber for Next Generation Fronthaul Interface. J Lightwave Technol, 2020, 38: 705-713 CrossRef ADS Google Scholar

[13] Wu C Y, Li H, Van Kerrebrouck J. Distributed Antenna System Using Sigma-Delta Intermediate-Frequency-Over-Fiber for Frequency Bands Above 24 GHz. J Lightwave Technol, 2020, 38: 2765-2773 CrossRef ADS Google Scholar

[14] Sohrabi F, Yu W. Hybrid Digital and Analog Beamforming Design for Large-Scale Antenna Arrays. IEEE J Sel Top Signal Process, 2016, 10: 501-513 CrossRef ADS arXiv Google Scholar

[15] Ayach O E, Rajagopal S, Abu-Surra S. Spatially Sparse Precoding in Millimeter Wave MIMO Systems. IEEE Trans Wireless Commun, 2014, 13: 1499-1513 CrossRef Google Scholar

[16] Ye X, Zhang F, Pan S. Optical true time delay unit for multi-beamforming. Opt Express, 2015, 23: 10002-10008 CrossRef PubMed ADS Google Scholar

[17] Combi L, Spagnolini U. Adaptive Optical Processing for Wideband Hybrid Beamforming. IEEE Trans Commun, 2019, 67: 4967-4979 CrossRef Google Scholar

[18] Perez-Lopez D, Sanchez E, Capmany J. Programmable True Time Delay Lines Using Integrated Waveguide Meshes. J Lightwave Technol, 2018, 36: 4591-4601 CrossRef ADS Google Scholar

[19] Blais S, Yao J. Photonic True-Time Delay Beamforming Based on Superstructured Fiber Bragg Gratings With Linearly Increasing Equivalent Chirps. J Lightwave Technol, 2009, 27: 1147-1154 CrossRef ADS Google Scholar

[20] Yang D H, Lin W P. Phased-array beam steering using optical true time delay technique. Optics Commun, 2015, 350: 90-96 CrossRef ADS Google Scholar

[21] Love D, Heath R, N. Lau V. An overview of limited feedback in wireless communication systems. IEEE J Sel Areas Commun, 2008, 26: 1341-1365 CrossRef Google Scholar

[22] Xu D, Ren P, Du Q. Towards win-win: weighted-Voronoi-diagram based channel quantization for security enhancement in downlink cloud-RAN with limited CSI feedback. Sci China Inf Sci, 2017, 60: 040303 CrossRef Google Scholar

[23] Alkhateeb A, Leus G, Heath R W. Limited Feedback Hybrid Precoding for Multi-User Millimeter Wave Systems. IEEE Trans Wireless Commun, 2015, 14: 6481-6494 CrossRef Google Scholar

[24] Kwon G, Park H. Limited Feedback Hybrid Beamforming for Multi-Mode Transmission in Wideband Millimeter Wave Channel. IEEE Trans Wireless Commun, 2020, 19: 4008-4022 CrossRef Google Scholar

[25] Junyi Wang , Zhou Lan , Chang-woo Pyo . Beam codebook based beamforming protocol for multi-Gbps millimeter-wave WPAN systems. IEEE J Sel Areas Commun, 2009, 27: 1390-1399 CrossRef Google Scholar

[26] Han Y, Jin S, Zhang J. DFT-Based Hybrid Beamforming Multiuser Systems: Rate Analysis and Beam Selection. IEEE J Sel Top Signal Process, 2018, 12: 514-528 CrossRef ADS arXiv Google Scholar

[27] Bantavis P I, Kolitsidas C I, Empliouk T. A Cost-Effective Wideband Switched Beam Antenna System for a Small Cell Base Station. IEEE Trans Antennas Propagat, 2018, 66: 6851-6861 CrossRef ADS Google Scholar

[28] Huang H, Zhang C, Chen C. Optical True Time Delay Pools Based Centralized Beamforming Control for Wireless Base Stations Phased-Array Antennas. J Lightwave Technol, 2018, 36: 3693-3699 CrossRef ADS Google Scholar

[29] Huang H, Zhang C F, Yang M C, et al. Optical true time delay pool based hybrid beamformer enabling centralized beamforming control in millimeter-wave C-RAN systems. Sci China Inf Sci, 2020, DOI: 10.1007/s11432-020-2991-1. Google Scholar

[30] Gong S, Lu X, Hoang D T. Toward Smart Wireless Communications via Intelligent Reflecting Surfaces: A Contemporary Survey. IEEE Commun Surv Tutorials, 2020, 22: 2283-2314 CrossRef Google Scholar

[31] Guo H, Liang Y C, Chen J. Weighted Sum-Rate Maximization for Reconfigurable Intelligent Surface Aided Wireless Networks. IEEE Trans Wireless Commun, 2020, 19: 3064-3076 CrossRef Google Scholar

[32] Huang C, Zappone A, Alexandropoulos G C. Reconfigurable Intelligent Surfaces for Energy Efficiency in Wireless Communication. IEEE Trans Wireless Commun, 2019, 18: 4157-4170 CrossRef Google Scholar

[33] Wang Z, Shi Y, Zhou Y. Wireless-Powered Over-the-Air Computation in Intelligent Reflecting Surface-Aided IoT Networks. IEEE Internet Things J, 2021, 8: 1585-1598 CrossRef Google Scholar

[34] Wu Q, Zhang R. Towards Smart and Reconfigurable Environment: Intelligent Reflecting Surface Aided Wireless Network. IEEE Commun Mag, 2020, 58: 106-112 CrossRef Google Scholar

[35] Wu Q and Zhang R. Intelligent reflecting surface enhanced wireless network: joint active and passive beamforming design. In: Proceedings of IEEE Global Communications Conference, United Arab Emirates, 2018. 1--6. Google Scholar

[36] Wu Q, Zhang R. Intelligent Reflecting Surface Enhanced Wireless Network via Joint Active and Passive Beamforming. IEEE Trans Wireless Commun, 2019, 18: 5394-5409 CrossRef Google Scholar

[37] Yang M C, Huang H, Zhang C F, et al. Optical codebook-based hybrid precoding for intelligent reflecting surface-assisted mmWave C-RAN systems. In: Proceedings of Asia Communications and Photonics Conference, Beijing, 2020. 336. Google Scholar

[38] Pradhan C, Li A, Song L. Hybrid Precoding Design for Reconfigurable Intelligent Surface Aided mmWave Communication Systems. IEEE Wireless Commun Lett, 2020, 9: 1041-1045 CrossRef Google Scholar

[39] Group Sparse Beamforming for Green Cloud-RAN. IEEE Trans Wireless Commun, 2014, 13: 2809-2823 CrossRef Google Scholar

[40] Wang Q, Zhou F, Hu R Q. Energy Efficient Robust Beamforming and Cooperative Jamming Design for IRS-Assisted MISO Networks. IEEE Trans Wireless Commun, 2021, 20: 2592-2607 CrossRef Google Scholar

[41] Zhou F, Li Z, Cheng J. Robust AN-Aided Beamforming and Power Splitting Design for Secure MISO Cognitive Radio With SWIPT. IEEE Trans Wireless Commun, 2017, 16: 2450-2464 CrossRef Google Scholar

[42] Dai L, Wang B, Peng M. Hybrid Precoding-Based Millimeter-Wave Massive MIMO-NOMA With Simultaneous Wireless Information and Power Transfer. IEEE J Sel Areas Commun, 2019, 37: 131-141 CrossRef Google Scholar

[43] Lu X, Yang W, Guan X. Robust and Secure Beamforming for Intelligent Reflecting Surface Aided mmWave MISO Systems. IEEE Wireless Commun Lett, 2020, 9: 2068-2072 CrossRef Google Scholar

[44] Chae C-B, Mazzarese D, Jindal N, et al. A low complexity linear multiuser MIMO beamforming system with limited feedback. In: Proceedings of 42nd Annual Conference on Information Sciences and Systems, Princeton, 2008. 418--422. Google Scholar

[45] Bj?rnson E. Optimal Resource Allocation in Coordinated Multi-Cell Systems. Found Trends Commun Inf Theor, 2013, 9: 173-234 CrossRef Google Scholar

[46] Liu H, Yuan X, Zhang Y J A. Matrix-Calibration-Based Cascaded Channel Estimation for Reconfigurable Intelligent Surface Assisted Multiuser MIMO. IEEE J Sel Areas Commun, 2020, 38: 2621-2636 CrossRef Google Scholar

[47] Jung M, Saad W, Kong G. Performance Analysis of Active Large Intelligent Surfaces (LISs): Uplink Spectral Efficiency and Pilot Training. IEEE Trans Commun, 2021, : 1-1 CrossRef Google Scholar

  • Figure 1

    (Color online) Structure of the proposed OTTDP-based HBF and limited feedback for RIS empowered mmWave C-RANs, where (a) physical implementation of the OTTDP and (b) schematic diagram of interconnection matrix ${{\boldsymbol~M}}_{\rm{IC}}$ are illustrated.

  • Table 1  

    Table 1The complexity and overheads of the proposed NI-LF precoding and AO algorithms

    The AO algorithm The proposed NI-LF precoding algorithm
    Number of multiplications $\mathcal{O}~(\kappa~(3M_{\rm{R}}^2+5M_{\rm{R}}M_{\rm{A}}+2M_{\rm{A}}~)~)$ $\mathcal{O}~(N_t^{\rm{RF}}~(K+M_{\rm{A}}~(2K+(N_t^{\rm{RF}})^2+3N_t^{\rm{RF}}+2~)~)~)$
    Number of divisions $\mathcal{O}~(N_t^{\rm{RF}}~(N_t^{\rm{RF}}+1~)~(2N_t^{\rm{RF}}+1~)/6~)$
    Training overhead $\left(M_{\rm{U}}\times~M_{\rm{R}}+M_{\rm{R}}\times~M_{\rm{A}}+M_{\rm{U}}\times~M_{\rm{A}}\right)\times~B$ $\left(M_{\rm{U}}\times~M_{\rm{A}}\right)\times~B$
    Feedback overhead $M_{\rm{R}}\times~B$ $N_s\times~N_t^{\rm{RF}}\times~B+N_t^{\rm{RF}}\times~B_{\lambda}$
qqqq

Contact and support