SCIENCE CHINA Information Sciences, Volume 64 , Issue 4 : 140402(2021) https://doi.org/10.1007/s11432-020-3172-1

Properties and photodetector applications of two-dimensional black arsenic phosphorus and black phosphorus

More info
  • ReceivedDec 14, 2020
  • AcceptedJan 13, 2021
  • PublishedMar 8, 2021



[1] Bridgman P W. TWO NEW MODIFICATIONS OF PHOSPHORUS.. J Am Chem Soc, 1914, 36: 1344-1363 CrossRef Google Scholar

[2] Morita A. Semiconducting black phosphorus. Appl Phys A, 1986, 39: 227-242 CrossRef ADS Google Scholar

[3] Wang X, Zhou P. Special Focus on Two-Dimensional Materials and Device Applications. Sci China Inf Sci, 2019, 62: 220400 CrossRef Google Scholar

[4] Yang H, Xiao M, Cui Y. Nonvolatile memristor based on heterostructure of 2D room-temperature ferroelectric α-In2Se3 and WSe2. Sci China Inf Sci, 2019, 62: 220404 CrossRef Google Scholar

[5] Jia R, Chen L, Huang Q. Complementary tunneling transistors based on WSe2/SnS2 van der Waals heterostructure. Sci China Inf Sci, 2020, 63: 149401 CrossRef Google Scholar

[6] Liu L, Liu Y, Duan X. Graphene-based vertical thin film transistors. Sci China Inf Sci, 2020, 63: 201401 CrossRef Google Scholar

[7] Novoselov K S. Electric Field Effect in Atomically Thin Carbon Films. Science, 2004, 306: 666-669 CrossRef ADS arXiv Google Scholar

[8] Tran V, Soklaski R, Liang Y. Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Phys Rev B, 2014, 89: 235319 CrossRef ADS Google Scholar

[9] Liu H, Neal A T, Zhu Z. Phosphorene: An Unexplored 2D Semiconductor with a High Hole Mobility. ACS Nano, 2014, 8: 4033-4041 CrossRef Google Scholar

[10] Li L, Yu Y, Ye G J. Black phosphorus field-effect transistors. Nat Nanotech, 2014, 9: 372-377 CrossRef ADS arXiv Google Scholar

[11] Shirotani I, Mikami J, Adachi T. Phase transitions and superconductivity of black phosphorus and phosphorus-arsenic alloys at low temperatures and high pressures. Phys Rev B, 1994, 50: 16274-16278 CrossRef ADS Google Scholar

[12] Liu B, K?pf M, Abbas A N. Black Arsenic-Phosphorus: Layered Anisotropic Infrared Semiconductors with Highly Tunable Compositions and Properties. Adv Mater, 2015, 27: 4423-4429 CrossRef Google Scholar

[13] Long M, Gao A, Wang P. Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus. Sci Adv, 2017, 3: e1700589 CrossRef ADS arXiv Google Scholar

[14] Wu F, Xia H, Sun H. AsP/InSe Van der Waals Tunneling Heterojunctions with Ultrahigh Reverse Rectification Ratio and High Photosensitivity. Adv Funct Mater, 2019, 29: 1900314 CrossRef Google Scholar

[15] Ryzhii V, Ryzhii M, Mitin V. Far-infrared photodetectors based on graphene/black-AsP heterostructures. Opt Express, 2020, 28: 2480 CrossRef ADS Google Scholar

[16] Wu F, Li Q, Wang P. High efficiency and fast van der Waals hetero-photodiodes with a unilateral depletion region. Nat Commun, 2019, 10: 4663 CrossRef ADS Google Scholar

[17] Takao Y, Morita A. Electronic structure of black phosphorus: Tight binding approach. Physica B+C, 1981, 105: 93-98 CrossRef Google Scholar

[18] Takao Y, Asahina H, Morita A. Electronic structure of black phosphorus in self-consistent pseudopotential approach. J Phys Soc Jpn, 1982, 50: 3362--3369. Google Scholar

[19] Xia F, Wang H, Jia Y. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat Commun, 2014, 5: 4458 CrossRef ADS arXiv Google Scholar

[20] Xia F, Wang H, Hwang J C M. Black phosphorus and its isoelectronic materials. Nat Rev Phys, 2019, 1: 306-317 CrossRef ADS Google Scholar

[21] Zhou W, Zhang S, Wang Y. Anisotropic In?¶lane Ballistic Transport in Monolayer Black Arsenic?¶hosphorus FETs. Adv Electron Mater, 2020, 6: 1901281 CrossRef Google Scholar

[22] Shi X, Wang T, Wang J. Synthesis of black arsenic-phosphorus and its application for Er-doped fiber ultrashort laser generation. Opt Mater Express, 2019, 9: 2348-2357 CrossRef ADS Google Scholar

[23] Sun J, Lin N, Ren H. The electronic structure, mechanical flexibility and carrier mobility of black arsenic-phosphorus monolayers: a first principles study. Phys Chem Chem Phys, 2016, 18: 9779-9787 CrossRef ADS Google Scholar

[24] Sun Y, Shuai Z, Wang D. Lattice thermal conductivity of monolayer AsP from first-principles molecular dynamics. Phys Chem Chem Phys, 2018, 20: 14024-14030 CrossRef ADS Google Scholar

[25] Karki B, Rajapakse M, Sumanasekera G U. Structural and Thermoelectric Properties of Black Arsenic-Phosphorus. ACS Appl Energy Mater, 2020, 3: 8543-8551 CrossRef Google Scholar

[26] Li L L, Bacaksiz C, Nakhaee M. Single-layer Janus black arsenic-phosphorus (b-AsP): Optical dichroism, anisotropic vibrational, thermal, and elastic properties. Phys Rev B, 2020, 101: 134102 CrossRef ADS Google Scholar

[27] Amani M, Regan E, Bullock J. Mid-Wave Infrared Photoconductors Based on Black Phosphorus-Arsenic Alloys. ACS Nano, 2017, 11: 11724-11731 CrossRef Google Scholar

[28] Yu L, Zhu Z, Gao A. Electrically tunable optical properties of few-layer black arsenic phosphorus. Nanotechnology, 2018, 29: 484001 CrossRef ADS Google Scholar

[29] Yuan S, Shen C, Deng B. Air-Stable Room-Temperature Mid-Infrared Photodetectors Based on hBN/Black Arsenic Phosphorus/hBN Heterostructures. Nano Lett, 2018, 18: 3172-3179 CrossRef ADS Google Scholar

[30] Low T, Rodin A S, Carvalho A. Tunable optical properties of multilayer black phosphorus thin films. Phys Rev B, 2014, 90: 075434 CrossRef ADS arXiv Google Scholar

[31] Young E P, Park J, Bai T. Wafer-Scale Black Arsenic-Phosphorus Thin-Film Synthesis Validated with Density Functional Perturbation Theory Predictions. ACS Appl Nano Mater, 2018, 1: 4737-4745 CrossRef Google Scholar

[32] Li L, Kim J, Jin C. Direct observation of the layer-dependent electronic structure in phosphorene. Nat Nanotech, 2017, 12: 21-25 CrossRef ADS arXiv Google Scholar

[33] Fei R, Yang L. Strain-Engineering the Anisotropic Electrical Conductance of Few-Layer Black Phosphorus. Nano Lett, 2014, 14: 2884-2889 CrossRef ADS arXiv Google Scholar

[34] Benam Z H, Arkin H, Aktürk E. Point defects in buckled and asymmetric washboard phases of arsenic phosphorus: A first principles study. Comput Mater Sci, 2017, 140: 290-298 CrossRef Google Scholar

[35] Li Y, Hu Z, Lin S. Giant Anisotropic Raman Response of Encapsulated Ultrathin Black Phosphorus by Uniaxial Strain. Adv Funct Mater, 2017, 27: 1600986 CrossRef Google Scholar

[36] Wang X, Jones A M, Seyler K L. Highly anisotropic and robust excitons in monolayer black phosphorus. Nat Nanotech, 2015, 10: 517-521 CrossRef ADS arXiv Google Scholar

[37] Liu H, Neal A T, Zhu Z. Phosphorene: An Unexplored 2D Semiconductor with a High Hole Mobility. ACS Nano, 2014, 8: 4033-4041 CrossRef Google Scholar

[38] Kim J, Lee J U, Lee J. Anomalous polarization dependence of Raman scattering and crystallographic orientation of black phosphorus. Nanoscale, 2015, 7: 18708-18715 CrossRef ADS arXiv Google Scholar

[39] Wu J, Mao N, Xie L. Identifying the Crystalline Orientation of Black Phosphorus Using Angle-Resolved Polarized Raman Spectroscopy. Angew Chem Int Ed, 2015, 54: 2366-2369 CrossRef Google Scholar

[40] Phaneuf-L'Heureux A L, Favron A, Germain J F. Polarization-Resolved Raman Study of Bulk-like and Davydov-Induced Vibrational Modes of Exfoliated Black Phosphorus. Nano Lett, 2016, 16: 7761-7767 CrossRef ADS Google Scholar

[41] Viti L, Hu J, Coquillat D. Efficient Terahertz detection in black-phosphorus nano-transistors with selective and controllable plasma-wave, bolometric and thermoelectric response. Sci Rep, 2016, 6: 20474 CrossRef ADS Google Scholar

[42] Liu Y, Qiu Z, Carvalho A. Gate-Tunable Giant Stark Effect in Few-Layer Black Phosphorus. Nano Lett, 2017, 17: 1970-1977 CrossRef ADS Google Scholar

[43] Das S, Demarteau M, Roelofs A. Ambipolar Phosphorene Field Effect Transistor. ACS Nano, 2014, 8: 11730-11738 CrossRef Google Scholar

[44] Engel M, Steiner M, Avouris P. Black Phosphorus Photodetector for Multispectral, High-Resolution Imaging. Nano Lett, 2014, 14: 6414-6417 CrossRef ADS arXiv Google Scholar

[45] Hong T, Chamlagain B, Lin W. Polarized photocurrent response in black phosphorus field-effect transistors. Nanoscale, 2014, 6: 8978-8983 CrossRef ADS Google Scholar

[46] Avsar A, Vera-Marun I J, Tan J Y. Air-Stable Transport in Graphene-Contacted, Fully Encapsulated Ultrathin Black Phosphorus-Based Field-Effect Transistors. ACS Nano, 2015, 9: 4138-4145 CrossRef Google Scholar

[47] Li L, Ye G J, Tran V. Quantum oscillations in a two-dimensional electron gas in black phosphorus thin films. Nat Nanotech, 2015, 10: 608-613 CrossRef ADS Google Scholar

[48] Saito Y, Iwasa Y. Ambipolar Insulator-to-Metal Transition in Black Phosphorus by Ionic-Liquid Gating. ACS Nano, 2015, 9: 3192-3198 CrossRef Google Scholar

[49] Viti L, Hu J, Coquillat D. Black Phosphorus Terahertz Photodetectors. Adv Mater, 2015, 27: 5567-5572 CrossRef Google Scholar

[50] Yang J, Xu R, Pei J. Optical tuning of exciton and trion emissions in monolayer phosphorene. Light Sci Appl, 2015, 4: e312-e312 CrossRef ADS arXiv Google Scholar

[51] Zhu W, Yogeesh M N, Yang S. Flexible Black Phosphorus Ambipolar Transistors, Circuits and AM Demodulator. Nano Lett, 2015, 15: 1883-1890 CrossRef ADS Google Scholar

[52] Li L, Yang F, Ye G J. Quantum Hall effect in black phosphorus two-dimensional electron system. Nat Nanotech, 2016, 11: 593-597 CrossRef ADS arXiv Google Scholar

[53] Zhu W, Park S, Yogeesh M N. Black Phosphorus Flexible Thin Film Transistors at Gighertz Frequencies. Nano Lett, 2016, 16: 2301-2306 CrossRef ADS Google Scholar

[54] Dhanabalan S C, Ponraj J S, Guo Z. Emerging Trends in Phosphorene Fabrication towards Next Generation Devices. Adv Sci, 2017, 4: 1600305 CrossRef Google Scholar

[55] Miao J, Song B, Li Q. Photothermal Effect Induced Negative Photoconductivity and High Responsivity in Flexible Black Phosphorus Transistors. ACS Nano, 2017, 11: 6048-6056 CrossRef Google Scholar

[56] Miao J, Xu Z, Li Q. Vertically Stacked and Self-Encapsulated van der Waals Heterojunction Diodes Using Two-Dimensional Layered Semiconductors. ACS Nano, 2017, 11: 10472-10479 CrossRef Google Scholar

[57] Miao J, Song B, Xu Z. Single Pixel Black Phosphorus Photodetector for Near-Infrared Imaging. Small, 2018, 14: 1702082 CrossRef Google Scholar

[58] Gao A, Lai J, Wang Y. Observation of ballistic avalanche phenomena in nanoscale vertical InSe/BP heterostructures. Nat Nanotechnol, 2019, 14: 217-222 CrossRef ADS arXiv Google Scholar

[59] Qiao J, Kong X, Hu Z X. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat Commun, 2014, 5: 4475 CrossRef ADS arXiv Google Scholar

[60] Xie M, Zhang S, Cai B. A promising two-dimensional solar cell donor: Black arsenic-phosphorus monolayer with 1.54 eV direct bandgap and mobility exceeding 14,000 cm2V?1s?1. Nano Energy, 2016, 28: 433-439 CrossRef Google Scholar

[61] Kim J S, Liu Y, Zhu W. Toward air-stable multilayer phosphorene thin-films and transistors. Sci Rep, 2015, 5: 8989 CrossRef ADS arXiv Google Scholar

[62] Buscema M, Groenendijk D J, Blanter S I. Fast and Broadband Photoresponse of Few-Layer Black Phosphorus Field-Effect Transistors. Nano Lett, 2014, 14: 3347-3352 CrossRef ADS arXiv Google Scholar

[63] Wu J, Koon G K W, Xiang D. Colossal Ultraviolet Photoresponsivity of Few-Layer Black Phosphorus. ACS Nano, 2015, 9: 8070-8077 CrossRef Google Scholar

[64] Buscema M, Groenendijk D J, Steele G A. Photovoltaic effect in few-layer black phosphorus PN junctions defined by local electrostatic gating. Nat Commun, 2014, 5: 4651 CrossRef ADS arXiv Google Scholar

[65] Chen C, Youngblood N, Peng R. Three-Dimensional Integration of Black Phosphorus Photodetector with Silicon Photonics and Nanoplasmonics. Nano Lett, 2017, 17: 985-991 CrossRef ADS Google Scholar

[66] Xiang D, Han C, Wu J. Surface transfer doping induced effective modulation on ambipolar characteristics of few-layer black phosphorus. Nat Commun, 2015, 6: 6485 CrossRef ADS Google Scholar

[67] Xu Y, Yuan J, Fei L. Selenium-Doped Black Phosphorus for High-Responsivity 2D Photodetectors. Small, 2016, 12: 5000-5007 CrossRef Google Scholar

[68] Na J, Park K, Kim J T. Air-stable few-layer black phosphorus phototransistor for near-infrared detection. Nanotechnology, 2017, 28: 085201 CrossRef ADS Google Scholar

[69] Chen X, Wu Y, Wu Z. High-quality sandwiched black phosphorus heterostructure and its quantum oscillations. Nat Commun, 2015, 6: 7315 CrossRef ADS arXiv Google Scholar

[70] Tayari V, Hemsworth N, Fakih I. Two-dimensional magnetotransport in a black phosphorus naked quantum well. Nat Commun, 2015, 6: 7702 CrossRef ADS arXiv Google Scholar

[71] Long G, Maryenko D, Shen J. Achieving Ultrahigh Carrier Mobility in Two-Dimensional Hole Gas of Black Phosphorus. Nano Lett, 2016, 16: 7768-7773 CrossRef ADS Google Scholar

[72] Perello D J, Chae S H, Song S. High-performance n-type black phosphorus transistors with type control via thickness and contact-metal engineering. Nat Commun, 2015, 6: 7809 CrossRef ADS Google Scholar

[73] Prakash A, Cai Y, Zhang G. Black Phosphorus N-Type Field-Effect Transistor with Ultrahigh Electron Mobility via Aluminum Adatoms Doping. Small, 2017, 13: 1602909 CrossRef Google Scholar

[74] Koenig S P, Doganov R A, Seixas L. Electron Doping of Ultrathin Black Phosphorus with Cu Adatoms. Nano Lett, 2016, 16: 2145-2151 CrossRef ADS Google Scholar

[75] Du Y, Liu H, Deng Y. Device Perspective for Black Phosphorus Field-Effect Transistors: Contact Resistance, Ambipolar Behavior, and Scaling. ACS Nano, 2014, 8: 10035-10042 CrossRef Google Scholar

[76] Wang Y, Wu P, Wang Z. Air?§table Low?§ymmetry Narrow?Bandgap 2D Sulfide Niobium for Polarization Photodetection. Adv Mater, 2020, 32: 2005037 CrossRef Google Scholar

[77] Hu W D, Li Q, Chen X S. wlxb, 2019, 68: 120701 CrossRef Google Scholar

[78] Wang Z, Wang P, Wang F. A Noble Metal Dichalcogenide for High?¶erformance Field?Effect Transistors and Broadband Photodetectors. Adv Funct Mater, 2020, 30: 1907945 CrossRef Google Scholar

[79] Ziletti A, Carvalho A, Trevisanutto P E. Phosphorene oxides: Bandgap engineering of phosphorene by oxidation. Phys Rev B, 2015, 91: 085407 CrossRef ADS arXiv Google Scholar

[80] Ziletti A, Carvalho A, Campbell D K. Oxygen Defects in Phosphorene. Phys Rev Lett, 2015, 114: 046801 CrossRef ADS arXiv Google Scholar

[81] Utt K L, Rivero P, Mehboudi M. Intrinsic Defects, Fluctuations of the Local Shape, and the Photo-Oxidation of Black Phosphorus. ACS Cent Sci, 2015, 1: 320-327 CrossRef Google Scholar

[82] Yang T, Dong B, Wang J. Interpreting core-level spectra of oxidizing phosphorene: Theory and experiment. Phys Rev B, 2015, 92: 125412 CrossRef ADS Google Scholar

[83] Favron A, Gaufrès E, Fossard F. Photooxidation and quantum confinement effects in exfoliated black phosphorus. Nat Mater, 2015, 14: 826-832 CrossRef ADS Google Scholar

[84] Wood J D, Wells S A, Jariwala D. Effective Passivation of Exfoliated Black Phosphorus Transistors against Ambient Degradation. Nano Lett, 2014, 14: 6964-6970 CrossRef ADS arXiv Google Scholar

[85] Peng R, Khaliji K, Youngblood N. Midinfrared Electro-optic Modulation in Few-Layer Black Phosphorus. Nano Lett, 2017, 17: 6315-6320 CrossRef ADS arXiv Google Scholar

[86] Cao Y, Mishchenko A, Yu G L. Quality Heterostructures from Two-Dimensional Crystals Unstable in Air by Their Assembly in Inert Atmosphere. Nano Lett, 2015, 15: 4914-4921 CrossRef ADS arXiv Google Scholar

[87] Viti L, Hu J, Coquillat D. Heterostructured hBN-BP-hBN Nanodetectors at Terahertz Frequencies. Adv Mater, 2016, 28: 7390-7396 CrossRef Google Scholar

[88] Illarionov Y Y, Waltl M, Rzepa G. Long-Term Stability and Reliability of Black Phosphorus Field-Effect Transistors. ACS Nano, 2016, 10: 9543-9549 CrossRef Google Scholar

[89] Artel V, Guo Q, Cohen H. Erratum: Protective molecular passivation of black phosphorus. npj 2D Mater Appl, 2017, 1: 27 CrossRef Google Scholar

[90] Cai Y, Ke Q, Zhang G. Highly Itinerant Atomic Vacancies in Phosphorene. J Am Chem Soc, 2016, 138: 10199-10206 CrossRef Google Scholar

[91] Hu W, Yang J. Defects in Phosphorene. J Phys Chem C, 2015, 119: 20474-20480 CrossRef Google Scholar

[92] Liu C H, Chang Y C, Norris T B. Graphene photodetectors with ultra-broadband and high responsivity at room temperature. Nat Nanotech, 2014, 9: 273-278 CrossRef ADS Google Scholar

[93] Roy K, Padmanabhan M, Goswami S. Graphene-MoS$_{2}$ hybrid structures for multifunctional photoresponsive memory devices. Nat Nanotech, 2013, 8: 826-830 CrossRef ADS Google Scholar

[94] Lopez-Sanchez O, Lembke D, Kayci M. Ultrasensitive photodetectors based on monolayer MoS$_{2}$. Nat Nanotech, 2013, 8: 497-501 CrossRef ADS Google Scholar

[95] Huo N, Konstantatos G. Ultrasensitive all-2D MoS$_{2}$ phototransistors enabled by an out-of-plane MoS$_{2}$ PN homojunction. Nat Commun, 2017, 8: 572 CrossRef ADS Google Scholar

[96] Tu L, Cao R, Wang X. Ultrasensitive negative capacitance phototransistors. Nat Commun, 2020, 11: 101 CrossRef ADS Google Scholar

[97] Deng Y, Luo Z, Conrad N J. ACS Nano, 2014, 8: 8292-8299 CrossRef Google Scholar

[98] Yuan H, Liu X, Afshinmanesh F. Polarization-sensitive broadband photodetector using a black phosphorus vertical p-n junction. Nat Nanotech, 2015, 10: 707-713 CrossRef ADS Google Scholar

[99] Gao A, Lai J, Wang Y. Observation of ballistic avalanche phenomena in nanoscale vertical InSe/BP heterostructures. Nat Nanotechnol, 2019, 14: 217-222 CrossRef ADS arXiv Google Scholar

[100] Guo Q, Pospischil A, Bhuiyan M. Black Phosphorus Mid-Infrared Photodetectors with High Gain. Nano Lett, 2016, 16: 4648-4655 CrossRef ADS arXiv Google Scholar

[101] Ye L, Li H, Chen Z. ACS Photonics, 2016, 3: 692-699 CrossRef Google Scholar

[102] Miao J, Zhang L, Wang C. Black phosphorus electronic and optoelectronic devices. 2D Mater, 2019, 6: 032003 CrossRef ADS Google Scholar

[103] Venuthurumilli P K, Ye P D, Xu X. Plasmonic Resonance Enhanced Polarization-Sensitive Photodetection by Black Phosphorus in Near Infrared. ACS Nano, 2018, 12: 4861-4867 CrossRef Google Scholar

[104] Li H, Ye L, Xu J. ACS Photonics, 2017, 4: 823-829 CrossRef Google Scholar

[105] Miao J, Zhang S, Cai L. Black Phosphorus Schottky Diodes: Channel Length Scaling and Application as Photodetectors. Adv Electron Mater, 2016, 2: 1500346 CrossRef Google Scholar

[106] Youngblood N, Chen C, Koester S J. Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current. Nat Photon, 2015, 9: 247-252 CrossRef ADS arXiv Google Scholar

[107] Xu Y, Liu C, Guo C. High performance near infrared photodetector based on in-plane black phosphorus p-n homojunction. Nano Energy, 2020, 70: 104518 CrossRef Google Scholar

[108] Hsu A L, Herring P K, Gabor N M. Graphene-Based Thermopile for Thermal Imaging Applications. Nano Lett, 2015, 15: 7211-7216 CrossRef ADS Google Scholar

[109] Huang L, Ang K W. Black phosphorus photonics toward on-chip applications. Appl Phys Rev, 2020, 7: 031302 CrossRef ADS Google Scholar

[110] Zhao S, Wu J, Jin K. Highly Polarized and Fast Photoresponse of Black Phosphorus-InSe Vertical p-n Heterojunctions. Adv Funct Mater, 2018, 28: 1802011 CrossRef Google Scholar

[111] Ma Y, Dong B, Wei J. High?Responsivity Mid?Infrared Black Phosphorus Slow Light Waveguide Photodetector. Adv Opt Mater, 2020, 8: 2000337 CrossRef Google Scholar

[112] Huang L, Dong B, Guo X. Waveguide-Integrated Black Phosphorus Photodetector for Mid-Infrared Applications. ACS Nano, 2019, 13: 913-921 CrossRef Google Scholar

[113] Yin Y, Cao R, Guo J. High?§peed and High?Responsivity Hybrid Silicon/Black?¶hosphorus Waveguide Photodetectors at 2 μm. Laser Photonics Rev, 2019, 556: 1900032 CrossRef Google Scholar

  • Figure 1

    (Color online) Crystal structures of b-P and b-AsP. (a-i) Perspective view of b-P crystal structure. The spacing of interlayer is 0.53 nm. (a-ii) Top view of monolayer b-P, where $x$ and $y$ correspond to the directions of armchair and zigzag, respectively. (b-i) Perspective view of b-AsP crystal lattice. (b-ii) Crystal lattice of the monolayer b-AsP in top and side views. (b-ii) is reproduced with permission from [21].

  • Figure 2

    (Color online) Band structures of b-P and b-AsP. (a-i) Band structures of one-layer, two-layers, three-layers and bulk phosphorene calculated using density functional theory. (a-ii) The relationship between bandgap and the layer number in theory and experiment. (b-i) b-AsP's orbital-resolved band structure obtained from first principles calculations coupled with the function formalism of non-equilibrium green. (b-ii) Component of arsenic dependent bandgaps of thick b-As$_{x}$P$_{1~-~x}$ flakes ($>30$ nm). (b-iii) Bandgaps of b-As$_{x}$P$_{1~-~x~}$ determined by the arsenic component and number of layers, calculated by HSE06 method. (a-i) is reproduced with permission from [30], (a-ii) from [8], (b-i) from [21], (b-ii) from [12], and (b-iii) from [31].

  • Figure 3

    (Color online) Optical properties of b-P and b-AsP. (a-i) An atomic force microscopy image of a thin b-P flake, shows a thickness about 7.75 nm. Inset: optical image of this b-P flake. (a-ii) Raman spectrum of b-P using polarized laser excitation along different directions. (b-i) Raman spectra of b-AsP with different contents of arsenic. (b-ii) Polarized infrared extinction spectra of the b-As$_{0.83}$P$_{0.17}$. Inset: optical image of the characterized flake. (a-i) and (a-ii) are reproduced with permission from [35], (b-i) from [12], and (b-ii) from [29].

  • Figure 4

    (Color online) Electronic properties of b-P and b-AsP. (a-i) Schematic of b-P device structure with eight electrodes along with different directions. (a-ii) The $I_{\rm~ds}$ and the transconductance as a function of angle. (b-i) Schematic of a b-AsP based field-effect transistor. (b-ii) Transfer curve of a thin b-As$_{0.83}$P$_{0.17}$ flake in semilog scale and linear scale (inset). (a-i) and (a-ii) are reproduced with permission from [9], (b-ii) from [12].

  • Figure 5

    (Color online) Phototransistors based on b-P and b-AsP. (a-i) Device structure of few-layer b-P based phototransistor operating at UV light. (a-ii) Device structure of the b-P based photodetector for infrared detection. Inset: optical image of the phototransistor. (a-iii) The responsivity as a function of incident light power at $V_{\rm~ds}$ = 100 mV and $V_{\rm~ds}$ = 500 mV, respectively. (b-i) Photo response of a b-AsP based phototransistor operating at 8.05 $\mu~$m with a power density of 0.17 W$\cdot$cm$^{~-~2}$. Inset: optical image of this device. (b-ii) Cross-sectional diagram of the phototransistor based on hBN/b-As$_{0.83}$P$_{0.17}$/hBN heterostructure. (b-iii) The photocurrent as a function of $V_{\rm~gs}$. (a-i) is reproduced with permission from [62], (a-ii) and (a-iii) from [57], (b-i) from [13], and (b-ii) and (b-iii) from [29].

  • Figure 6

    (Color online) Photodiodes based on b-P and b-AsP. (a-i) Schematic of the monolayer MoS$_{2}$/b-AsP photodiode. (a-ii) $I_{\rm~ds}$-$V_{\rm~ds}$ curves of the p-n photodiode based on monolayer MoS$_{2}$/b-AsP under the incident light with various powers. Inset: the detailed reverse region at bias from $-1$ V to 0 V. (b-i) The detectivity as a function of wavelength at $V_{\rm~ds}$ = 0 V. Compared with the detectivity of commercial thermistor bolometer [106]and PbSe mid-infrared detectors, the MoS$_{2}$/b-AsP photodiode shows great advantages. (b-ii) $I_{\rm~ds}$-$V_{\rm~ds}$ curve of the InSe/b-AsP diode at $V_{\rm~gs}$ = 10 V. Inset: schematic of the device. (a-i) and (a-ii) are reproduced with permission from [96], (b-i) from [13], and (b-iii) from [14].

  • Table 1  

    Table 1Electrical performance of b-AsP and b-P basedfield-effect transistors$^{\rm~a)}$

    MaterialsThickness (nm)Contact electrodeDielectric layerPassivation layerMobility (cm$^{2}\cdot$V$^{-1}\cdot$s$^{-1})$Ref.
    ex b-As$_{0.83}$P$_{0.17}$5–20Ti-AuSiO$_{2}$PMMA${h=}$ 307[13]
    ex b-As$_{0.83}$P$_{0.17}$37Cr-AuhBN-SiO$_{2}$hBN${h=}$ 79, ${e=}$ 83[29]
    ex b-As$_{0.83}$P$_{0.17}$15Ti-AuSiO$_{2}$PMMA${h=}$ 110[12]
    cal b-AsP1-layer${h=}$ 2100, ${e=}$ 14380 [59]
    ex b-P5–25Ti-AuAl$_{2}$O$_{3}$Al$_{2}$O$_{3}$${h=}$ 200[60]
    ex b-P8Ti-AuSiO$_{2}$${h=}$ 100, ${e=}$ 0.5[61]
    ex b-P4.5Ti-AuSiO$_{2}$PMMA${h=}$ 142[62]
    ex b-P6–7Ti-AuhBN${h=}$ 25, ${e=}$ 0.12[63]
    ex b-P5–15Ti-AuSiO$_{2}$${h=}$ 52[44]
    ex b-P20Ti-AuSiO$_{2}$Al$_{2}$O$_{3}$${h=}$ 0.96[64]
    ${h=}$ 215, ${e=}$ 1
    ex b-P4.8Ti-AuSiO$_{2}$Cs$_{2}$CO$_{3}$${e=}$ 27[65]
    MoO$_{3}$${h=}$ 200
    ex Se doped b-PCr-AuSiO$_{2}$${h=}$ 561[66]
    ex b-PAuSiO$_{2}$Al$_{2}$O$_{3}$${h=}$ 100[67]
    ex b-P11.3Ti-AuAl$_{2}$O$_{3}$Al$_{2}$O$_{3}$${h=}$ 187[53]
    ex b-P7AuSiO$_{2}$Al$_{2}$O$_{3}$${h=}$ 230[56]
    ex b-P10Ti-AuSiO$_{2}$${h=}$ 286[9]
    ex b-P6.5Cr-AuSiO$_{2}$${h=}$ 984[10]
    ex b-P5Ti-PdSiO$_{2}$${h=}$ 205[19]
    ex b-P1.9TiSiO$_{2}$Al$_{2}$O$_{3}$${h=}$ 172, ${e=}$ 38[42]
    ex b-P8Cr-AuhBN-SiO$_{2}$hBN${h=}$ 1350[68]
    ex b-PAuhBN-SiO$_{2}$${h=}$ 400, ${e=}$ 83[46]
    ex b-P43$\pm~$2Ti-AuSiO$_{2}$MMA-PMMA${h=}$ 900[69]
    ex b-PCr-AuhBN-SiO$_{2}$hBN${h=}$ 5200 [70]
    ex b-P13ALSiO$_{2}$Al$_{2}$O$_{3}$${e=}$ 950[71]
    3${e=}$ 275
    ex Al doped b-P5Ti-AuSiO$_{2}$Al$_{2}$O$_{3}$${e=}$ 1495[72]
    ex Cu doped b-P10Ti-AuhBN${e=}$ 690[73]
    ex b-P18.7NiSiO$_{2}$${h=}$ 170[74]
    Pd${h=}$ 186
    ex b-P15Ti-AuAl$_{2}$O$_{3}$Al$_{2}$O$_{3}$${h=}$ 310, ${e=}$ 89[50]
    ex b-P13Ti-AuAl$_{2}$O$_{3}$PMMA${h=}$ 233[52]
    cal b-P1-layer${h=}$ 26000, ${e=}$ 1140[58]
    multi-layer${h=}$ 6400, ${e=}$ 1580


  • Table 2  

    Table 2Performance of b-AsP based photodetectors$^{\rm~a)}$

    MaterialTh (nm)Device structureWavelength (nm)$R$ (mA/W)EQE (%)Speed (ms)$D$* (cm$^2$ V$^{-1}$ s$^{-1}$) Ref.
    b-AsP25–35Phototransistor460080.0124, 0.00892.4 $\times$ 10$^{10}$[27]
    b-AsP5–20Phototransistor36621806.10.54, 0.521.06 $\times$ 10$^8$[13]
    MoS$_2$-b-AsPPhotodiode4290115.43.334.9 $\times$ 10$^9$[13]
    2360216.111.369.2 $\times$ 10$^9$
    MoS$_2$-b-AsP66, 59Photodiode5200.3710.009, 0.005[16]
    InSe-b-AsP10, 11.5Photodiode52010001.50.217, 0.0891 $\times$ 10$^{12}$[14]


  • Table 3  

    Table 3Performance of b-P based photodetectors$^{\rm~a)}$

    MaterialTh (nm)Device structureWavelength (nm)$R$ (mA/W)EQE (%)Speed (ms)$D$* (cm$^2$ V$^{-1}$ s$^{-1}$)Ref.
    b-P8Phototransistor6404.81, 4[61]
    b-P4.5PhototransistorUV9$\times$10$^7$1, 43$\times$10$^{13}$[62]
    p-n b-P10Phototransistor15505$\times$10$^3$3900.035, 0.04[105]
    b-P-C$_{\rm~S2}$CO$_3$4.8 Phototransistor405 1.88 576[65]
    Se doped b-PPhototransistor6351.53$\times$10$^4$2993[66]
    b-PPhototransistor155060.1, 0.3[84]
    WSe$_2$-BP-MoS$_2$Phototransistor5326.32$\times$10$^3$ 1.25$\times$10$^{11}$[102]
    b-P-MoS$_2$22, 12Photodiode1550153.4200.0153.1$\times10^{11}$[98]
    p-n b-PPhotodiode9400.1[63]
    b-P-MoS$_2$11, 0.9Photodiode6334180.3[96]
    p-n b-P30Photodiode12000.35[97]
    b-P-InSePhotodiode45511.73.224, 32[108]
    b-P23Waveguide3700 2$\times$10$^3$[107]
    b-P11Waveguide 1570–1580135 [104]