logo

SCIENCE CHINA Information Sciences, Volume 64 , Issue 10 : 202202(2021) https://doi.org/10.1007/s11432-020-3145-0

Adaptive control with saturation-constrainted observations for drag-free satellites — a set-valued identification approach

More info
  • ReceivedJul 9, 2020
  • AcceptedNov 27, 2020
  • PublishedSep 15, 2021

Abstract


Acknowledgment

This work was supported by National Key Research and Development Program of China (Grant No. 2018YFA0703800) and National Natural Science Foundation of China (Grant Nos. 61773054, 62025306).


References

[1] Dittus H, Lammerzahl C, Turyshev S. Lasers, Clocks, and Drag-Free: Exploration of Relativistic Gravity in Space. Berlin: Springer, 2008. Google Scholar

[2] Luo, Z., Zhong, M., Bian, X., et al. Mapping Earth's gravity in space: Review and future perspective. Advances in Mechanies, 2014, 44(1): 291-337 doi: 10.6052/1000-0992-15-025. Google Scholar

[3] Lange B. The control and use of drag-free satellites. Dissertation for Ph.D. Degree. Stanford: Stanford University, 1964. Google Scholar

[4] Haines R. Development of a drag-free control system. In: Proceedings of the 14th Annual AIAA/USU Conference on Small Satellites, Utah, 2000. Google Scholar

[5] Evers W. GOCE Dynamical Analysis and Drag-Free Mode Control. DCT Report, 2004. Google Scholar

[6] Canuto E. Drag-free and attitude control for the GOCE satellite. Automatica, 2008, 44: 1766-1780 CrossRef Google Scholar

[7] Prieto D, Bona B. Orbit and attitude control for the European satellite GOCE. In: Proceedings of IEEE Networking, Sensing and Control, Politecnico di Torino, 2005. Google Scholar

[8] Wu S F, Fertin D. Spacecraft drag-free attitude control system design with Quantitative Feedback Theory. Acta Astronaut, 2008, 62: 668-682 CrossRef ADS Google Scholar

[9] Prieto D, Ahmad Z. A drag free control based on model predictive techniques. In: Proceeding of American Control Conference Portland, 2005. Google Scholar

[10] Yang, F., Tan, S., Xue, W., Guo, J., Zhao, Y. Extended state filtering with saturation-constrainted observations and active disturbance rejection control of position and attitude for drag-free satellites. Acta Automatica Sinica, 2020, doi: 10.16383/j.aas.c190515. Google Scholar

[11] Lei Guo , Han-Fu Chen . The AAstrom-Wittenmark self-tuning regulator revisited and ELS-based adaptive trackers. IEEE Trans Automat Contr, 1991, 36: 802-812 CrossRef Google Scholar

[12] Arabi E, Yucelen T. Set-theoretic model reference adaptive control with time-varying performance bounds. Int J Control, 2019, 92: 2509-2520 CrossRef ADS Google Scholar

[13] Xiao S, Dong J. Robust adaptive fault-tolerant tracking control for uncertain linear systems with time-varying performance bounds. Int J Robust NOnlinear Control, 2019, 29: 849-866 CrossRef Google Scholar

[14] Casini M, Garulli A, Vicino A. Input Design in Worst-Case System Identification Using Binary Sensors. IEEE Trans Automat Contr, 2011, 56: 1186-1191 CrossRef Google Scholar

[15] Godoy B I, Goodwin G C, Agüero J C. On identification of FIR systems having quantized output data. Automatica, 2011, 47: 1905-1915 CrossRef Google Scholar

[16] Guo J, Diao J D. Prediction-based event-triggered identification of quantized input FIR systems with quantized output observations. Sci China Inf Sci, 2020, 63: 112201 CrossRef Google Scholar

[17] Zheng C, Li L, Wang L. How much information is needed in quantized nonlinear control?. Sci China Inf Sci, 2018, 61: 092205 CrossRef Google Scholar

[18] Le Yi Wang , Ji-Feng Zhang , Yin G G. System identification using binary sensors. IEEE Trans Automat Contr, 2003, 48: 1892-1907 CrossRef Google Scholar

[19] Jing L, Zhang J. Tracking control and parameter identification with quantized ARMAX systems. Sci China Inf Sci, 2019, 62: 199203 CrossRef Google Scholar

[20] Wang T, Bi W, Zhao Y. Radar target recognition algorithm based on RCS observation sequence - set-valued identification method. J Syst Sci Complex, 2016, 29: 573-588 CrossRef Google Scholar

[21] Wang L Y, Yin G G, Zhang J F, et al. System Identification with Quantized Observations. Boston: Birkhäuser, 2010. Google Scholar

[22] You K. Recursive algorithms for parameter estimation with adaptive quantizer. Automatica, 2015, 52: 192-201 CrossRef Google Scholar

[23] Lian Y, Luo Z, Weyer E, et al. Parameter estimation with binary observations of input and output signals. In: Proceeding of 2016 Australian Control Conference (AuCC), 2016. 226-231. Google Scholar

[24] Colinet E, Juillard J. A Weighted Least-Squares Approach to Parameter Estimation Problems Based on Binary Measurements. IEEE Trans Automat Contr, 2010, 55: 148-152 CrossRef Google Scholar

[25] Zhao Y, Bi W, Wang T. Iterative parameter estimate with batched binary-valued observations. Sci China Inf Sci, 2016, 59: 052201 CrossRef Google Scholar

[26] Guo J, Zhang J F, Zhao Y. Adaptive Tracking Control of A Class of First-Order Systems With Binary-Valued Observations and Time-Varying Thresholds. IEEE Trans Automat Contr, 2011, 56: 2991-2996 CrossRef Google Scholar

[27] Guo J, Zhang J F, Zhao Y. Adaptive tracking of a class of first-order systems with binary-valued observations and fixed thresholds. J Syst Sci Complex, 2012, 25: 1041-1051 CrossRef Google Scholar

[28] Zhao Y, Guo J, Zhang J F. Adaptive Tracking Control of Linear Systems With Binary-Valued Observations and Periodic Target. IEEE Trans Automat Contr, 2013, 58: 1293-1298 CrossRef Google Scholar

[29] Chen H-F. Stochastic Approximation and Its Application. Dordrecht: Kluwer Academic Publishers, 2002. Google Scholar

[30] Guo L. Time-Varying Stochastic Systems---Stability, Estimation and Control. Changchun: Jilin Science and Technolory Press, 1993. Google Scholar

[31] Chow Y S, Teicher H. Probability Theory: Independence, Interchangeability, Martingales. 2rd Ed. New York: Springer-Verlag, 1997. Google Scholar

qqqq

Contact and support