SCIENCE CHINA Information Sciences, Volume 64 , Issue 10 : 202202(2021) https://doi.org/10.1007/s11432-020-3145-0

Adaptive control with saturation-constrainted observations for drag-free satellites — a set-valued identification approach

More info
  • ReceivedJul 9, 2020
  • AcceptedNov 27, 2020
  • PublishedSep 15, 2021



This work was supported by National Key Research and Development Program of China (Grant No. 2018YFA0703800) and National Natural Science Foundation of China (Grant Nos. 61773054, 62025306).


[1] Dittus H, Lammerzahl C, Turyshev S. Lasers, Clocks, and Drag-Free: Exploration of Relativistic Gravity in Space. Berlin: Springer, 2008. Google Scholar

[2] Luo, Z., Zhong, M., Bian, X., et al. Mapping Earth's gravity in space: Review and future perspective. Advances in Mechanies, 2014, 44(1): 291-337 doi: 10.6052/1000-0992-15-025. Google Scholar

[3] Lange B. The control and use of drag-free satellites. Dissertation for Ph.D. Degree. Stanford: Stanford University, 1964. Google Scholar

[4] Haines R. Development of a drag-free control system. In: Proceedings of the 14th Annual AIAA/USU Conference on Small Satellites, Utah, 2000. Google Scholar

[5] Evers W. GOCE Dynamical Analysis and Drag-Free Mode Control. DCT Report, 2004. Google Scholar

[6] Canuto E. Drag-free and attitude control for the GOCE satellite. Automatica, 2008, 44: 1766-1780 CrossRef Google Scholar

[7] Prieto D, Bona B. Orbit and attitude control for the European satellite GOCE. In: Proceedings of IEEE Networking, Sensing and Control, Politecnico di Torino, 2005. Google Scholar

[8] Wu S F, Fertin D. Spacecraft drag-free attitude control system design with Quantitative Feedback Theory. Acta Astronaut, 2008, 62: 668-682 CrossRef ADS Google Scholar

[9] Prieto D, Ahmad Z. A drag free control based on model predictive techniques. In: Proceeding of American Control Conference Portland, 2005. Google Scholar

[10] Yang, F., Tan, S., Xue, W., Guo, J., Zhao, Y. Extended state filtering with saturation-constrainted observations and active disturbance rejection control of position and attitude for drag-free satellites. Acta Automatica Sinica, 2020, doi: 10.16383/j.aas.c190515. Google Scholar

[11] Lei Guo , Han-Fu Chen . The AAstrom-Wittenmark self-tuning regulator revisited and ELS-based adaptive trackers. IEEE Trans Automat Contr, 1991, 36: 802-812 CrossRef Google Scholar

[12] Arabi E, Yucelen T. Set-theoretic model reference adaptive control with time-varying performance bounds. Int J Control, 2019, 92: 2509-2520 CrossRef ADS Google Scholar

[13] Xiao S, Dong J. Robust adaptive fault-tolerant tracking control for uncertain linear systems with time-varying performance bounds. Int J Robust NOnlinear Control, 2019, 29: 849-866 CrossRef Google Scholar

[14] Casini M, Garulli A, Vicino A. Input Design in Worst-Case System Identification Using Binary Sensors. IEEE Trans Automat Contr, 2011, 56: 1186-1191 CrossRef Google Scholar

[15] Godoy B I, Goodwin G C, Agüero J C. On identification of FIR systems having quantized output data. Automatica, 2011, 47: 1905-1915 CrossRef Google Scholar

[16] Guo J, Diao J D. Prediction-based event-triggered identification of quantized input FIR systems with quantized output observations. Sci China Inf Sci, 2020, 63: 112201 CrossRef Google Scholar

[17] Zheng C, Li L, Wang L. How much information is needed in quantized nonlinear control?. Sci China Inf Sci, 2018, 61: 092205 CrossRef Google Scholar

[18] Le Yi Wang , Ji-Feng Zhang , Yin G G. System identification using binary sensors. IEEE Trans Automat Contr, 2003, 48: 1892-1907 CrossRef Google Scholar

[19] Jing L, Zhang J. Tracking control and parameter identification with quantized ARMAX systems. Sci China Inf Sci, 2019, 62: 199203 CrossRef Google Scholar

[20] Wang T, Bi W, Zhao Y. Radar target recognition algorithm based on RCS observation sequence - set-valued identification method. J Syst Sci Complex, 2016, 29: 573-588 CrossRef Google Scholar

[21] Wang L Y, Yin G G, Zhang J F, et al. System Identification with Quantized Observations. Boston: Birkhäuser, 2010. Google Scholar

[22] You K. Recursive algorithms for parameter estimation with adaptive quantizer. Automatica, 2015, 52: 192-201 CrossRef Google Scholar

[23] Lian Y, Luo Z, Weyer E, et al. Parameter estimation with binary observations of input and output signals. In: Proceeding of 2016 Australian Control Conference (AuCC), 2016. 226-231. Google Scholar

[24] Colinet E, Juillard J. A Weighted Least-Squares Approach to Parameter Estimation Problems Based on Binary Measurements. IEEE Trans Automat Contr, 2010, 55: 148-152 CrossRef Google Scholar

[25] Zhao Y, Bi W, Wang T. Iterative parameter estimate with batched binary-valued observations. Sci China Inf Sci, 2016, 59: 052201 CrossRef Google Scholar

[26] Guo J, Zhang J F, Zhao Y. Adaptive Tracking Control of A Class of First-Order Systems With Binary-Valued Observations and Time-Varying Thresholds. IEEE Trans Automat Contr, 2011, 56: 2991-2996 CrossRef Google Scholar

[27] Guo J, Zhang J F, Zhao Y. Adaptive tracking of a class of first-order systems with binary-valued observations and fixed thresholds. J Syst Sci Complex, 2012, 25: 1041-1051 CrossRef Google Scholar

[28] Zhao Y, Guo J, Zhang J F. Adaptive Tracking Control of Linear Systems With Binary-Valued Observations and Periodic Target. IEEE Trans Automat Contr, 2013, 58: 1293-1298 CrossRef Google Scholar

[29] Chen H-F. Stochastic Approximation and Its Application. Dordrecht: Kluwer Academic Publishers, 2002. Google Scholar

[30] Guo L. Time-Varying Stochastic Systems---Stability, Estimation and Control. Changchun: Jilin Science and Technolory Press, 1993. Google Scholar

[31] Chow Y S, Teicher H. Probability Theory: Independence, Interchangeability, Martingales. 2rd Ed. New York: Springer-Verlag, 1997. Google Scholar


Contact and support