logo

SCIENCE CHINA Information Sciences, Volume 64 , Issue 8 : 182311(2021) https://doi.org/10.1007/s11432-020-3139-9

Joint optimization of spectral efficiency for cell-free massive MIMO with network-assisted full duplexing

More info
  • ReceivedJun 13, 2020
  • AcceptedDec 14, 2020
  • PublishedJul 8, 2021

Abstract


Acknowledgment

This work was supported in part by National Key Research and Development Program (Grant No. 2018YF- E0205902), National Natural Science Foundation of China (NSFC) (Grant Nos. 61871122, 61971127, 61871465, 61801168).


References

[1] Wang J and Dai L. Downlink rate analysis for virtual-cell based large-scale distributed antenna systems. IEEE Transactions on Wireless Communications, 2015, 15(3):1998--2011. Google Scholar

[2] Li J, Wang D, Zhu P, et al. Impacts of practical channel impairments on the downlink spectral efficiency of large-scale distributed antenna systems. Science China Information Sciences, 2019, 62(2):22303. Google Scholar

[3] Shojaeifard A, Wong K K, Yu W, et al. Full-duplex cloud radio access network: Stochastic design and analysis. IEEE Transactions on Wireless Communications, 2018, 17(11):7190--7207. Google Scholar

[4] Nguyen D, Tran L N, Pirinen P, et al. On the spectral efficiency of full-duplex small cell wireless systems. IEEE Transactions on Wireless Communications, 2014, 13(9):4896--4910. Google Scholar

[5] Yadav A, Dobre O A, and Poor H V. Is self-interference in full-duplex communications a foe or a friend? IEEE Signal Processing Letters, 2018, 25(7):951--955. Google Scholar

[6] Riihonen T, Werner S, and Wichman R. Mitigation of loopback self-interference in full-duplex MIMO relays. IEEE Transactions on Signal Processing, 2011, 59(12):5983--5993. Google Scholar

[7] Koh J, Lim Y G, Chae C B, et al. On the feasibility of full-duplex large-scale MIMO cellular systems. IEEE Transactions on Wireless Communications, 2018, 17(9):6231--6250. Google Scholar

[8] Bharadia D, McMilin E, and Katti S. Full duplex radios. In: Proceedings of ACM SIGCOMM Computer Communication Review ACM, 2013. 375--386. Google Scholar

[9] Thomsen H, Popovski P, De Carvalho E, et al. CoMPflex: CoMP for in-band wireless full duplex. IEEE Wireless Communications Letters, 2015, 5(2):144--147. Google Scholar

[10] Xin Y, Zhang R, Wang D, et al. Antenna clustering for bidirectional dynamic network with large-scale distributed antenna systems. IEEE Access, 2017, 5:4037--4047. Google Scholar

[11] Xin Y, Yang L, Wang D, et al. Bidirectional dynamic networks with massive MIMO: Performance analysis. IET Communications, 2017, 11(4):468--476. Google Scholar

[12] Wang D, Zhao Z, Huang Y, et al. Large-scale multi-user distributed antenna system for 5G wireless communications. In: Proceedings of 2015 IEEE 81st Vehicular Technology Conference (VTC Spring), 2015. 1--5. Google Scholar

[13] Vu T T, Ngo D T, Ngo H Q, et al. Full-duplex cell-free massive MIMO. In: Proceedings of 2019 IEEE International Conference on Communications (ICC), 2019. 1--6. Google Scholar

[14] Nguyen V H, Nguyen v D, Dobre O A, et al. A novel heap-based pilot assignment for full duplex cell-free massive MIMO with zero-forcing. In: Proceedings of 2020 IEEE International Conference on Communications (ICC), 2020. 1-6. Google Scholar

[15] Nguyen H V, Nguyen V D, Dobre O A, et al. Joint antenna array mode selection and user assignment for full-duplex MU-MISO systems. IEEE Transactions on Wireless Communications, 2019, 18(6):2946--2963. Google Scholar

[16] Wang D, Wang M, Zhu P, et al. Performance of network-assisted full-duplex for cell-free massive MIMO. IEEE Transactions on Communications, 2020, 68(3):1464--1478. Google Scholar

[17] Xia X, Zhu P, Li J, et al. Joint sparse beamforming and power control for a large-scale DAS with network-assisted full duplex. IEEE Transactions on Vehicular Technology, 2020, 69(7):7569--7582. Google Scholar

[18] Wu F, Xu Q, Shao S, et al. Performance of auxiliary antenna-based self-interference cancellation in full-duplex radios. Science China Information Sciences, 2018, 61(10):109307--1. Google Scholar

[19] Simeone O, Erkip E, and Shamai S. Full-duplex cloud radio access networks: An information-theoretic viewpoint. IEEE Wireless Communications Letters, 2014, 3(4):413--416. Google Scholar

[20] Mohammadi M, Suraweera H A, Tellambura C. Uplink/Downlink Rate Analysis and Impact of Power Allocation for Full-Duplex Cloud-RANs. IEEE Trans Wireless Commun, 2018, 17: 5774-5788 CrossRef Google Scholar

[21] Zhao M M, Shi Q, Cai Y. Joint Transceiver Design for Full-Duplex Cloud Radio Access Networks With SWIPT. IEEE Trans Wireless Commun, 2017, 16: 5644-5658 CrossRef Google Scholar

[22] Zhou M, Cui H, Song L, et al. Transmit-receive antenna pair selection in full duplex systems. IEEE Wireless Communications Letters, 2013, 3(1):34--37. Google Scholar

[23] da Silva J M B, Ghauch H, Fodor G, et al. How to split UL/DL antennas in full-duplex cellular networks. In: Proceedings of 2018 IEEE International Conference on Communications Workshops (ICC Workshops), 2018. 1--6. Google Scholar

[24] Cela E. The quadratic assignment problem: theory and algorithms, volume 1. Springer Science & Business Media, 2013. Google Scholar

[25] Murray W, Ng K M. An algorithm for nonlinear optimization problems with binary variables. Comput Optim Appl, 2010, 47: 257-288 CrossRef Google Scholar

[26] Rinaldi F. New results on the equivalence between zero-one programming and continuous concave programming. Optim Lett, 2009, 3: 377-386 CrossRef Google Scholar

[27] Venkatraman G, Tolli A, Juntti M. Multigroup Multicast Beamformer Design for MISO-OFDM With Antenna Selection. IEEE Trans Signal Process, 2017, 65: 5832-5847 CrossRef Google Scholar

[28] Melo W, Fampa M, Raupp F. Integrality gap minimization heuristics for binary mixed integer nonlinear programming. J Glob Optim, 2018, 71: 593-612 CrossRef Google Scholar

[29] Lucidi S, Rinaldi F. Exact Penalty Functions for Nonlinear Integer Programming Problems. J Optim Theor Appl, 2010, 145: 479-488 CrossRef Google Scholar

[30] Nguyen V D, Duong T Q, Tuan H D. Spectral and Energy Efficiencies in Full-Duplex Wireless Information and Power Transfer. IEEE Trans Commun, 2017, 65: 2220-2233 CrossRef Google Scholar

[31] Wiesel A, Eldar Y C, and Shamai S. Linear precoding via conic optimization for fixed MIMO receivers. IEEE Transactions on Signal Processing, 2005, 54(1):161--176. Google Scholar

[32] Grant M and Boyd S. CVX: Matlab software for disciplined convex programming, version 2.1, 2014. Google Scholar

[33] Boyd S and Vandenberghe L. Convex optimization. Cambridge university press, 2004. Google Scholar

[34] Peaucelle D, Henrion D, Labit Y, et al. User's guide for sedumi interface 1.04. LAAS-CNRS, Toulouse, 2002. Google Scholar

[35] Nguyen H V, Nguyen V D, Dobre O A. Joint Power Control and User Association for NOMA-Based Full-Duplex Systems. IEEE Trans Commun, 2019, 67: 8037-8055 CrossRef Google Scholar

  • Figure 1

    (Color online) Duplex mode selection of a cell-free with NAFD.

  • Figure 2

    (Color online) The convergence behavior of SE performance versus iteration/loop for ${\Delta}=-10/10/30$ dB, $M=3/4/8$. (a) The convergence behavior of SE versus iteration; (b) the convergence behavior of SE versus loop.

  • Table 1  

    Table 1Simulation parameters

    Parameter Value
    Radius 60 m
    Power constraint for RAU/User 1 W/0.1 W
    Number of downlink users/uplink users 4/4
    Path loss 128.1 + 37.6log10($d$)
    Lognormal shadowing/Rayleigh fading8 dB/0 dB
    Noise power (${\sigma^2_{\text{U},z}}=\sigma~_{{\text{D}},k}^2=\sigma^2$) $-$70 dBm
  •   

    Algorithm 1 Duplex mode selection and transceiver design algorithm

    convergence; the optimal solutions $\{~P^{\dag}~_{\text{U},j},~\boldsymbol{W}^{\dag}_{\text{D},k},~{{{\boldsymbol{u}}^{\dag}_{\text{U},j}}},{{\boldsymbol{Q}}^{\dag}_{\text{D}}},{{{{\boldsymbol{Q}}^{\dag}_{\rm{U}}}}~}\}.$

    Require:Initialization: ${{\boldsymbol{q}}^{(~0~)}_{\text{D}}}$, ${{{{\boldsymbol{q}}^{(~0~)}_{\text{U}}}}~}~$, $~{{\boldsymbol{w}}^{(~0~)}_{{\text{D}},k}}~$, $~{{\boldsymbol{u}}^{(~0~)}_{{\text{U}},j}}~$, ${P^{(~0~)}_{{\text{U}},j}}$. $\text{Set~}~{{\boldsymbol{q}}^{(~0~)}_{\text{D}}},~{{{{\boldsymbol{q}}^{(~0~)}_{\text{U}}}}~}~{\rm{~}}~\to~\{0.5\}^{MX~\times~1},~\rm{loop}~{\rm{~}}~\to~{0}$.

    repeat

    Fix ${~{{{\boldsymbol{Q}}}^{(~{n~}~)}_{{\text{D}}}}~}$, ${{{\boldsymbol{Q}}}^{(~{n~}~)}_{{\text{U}}}}$, solve problem 12a and obtain optimal transceivers $~{{\boldsymbol{w}}^{\dag}_{{\text{D}},k}}~$, $~{{\boldsymbol{u}}^{\dag}_{{\text{U}},j}}~$, ${P^{\dag}_{{\text{U}},j}}$ by Algorithm 2 in Subsection 4.1;

    Update ${{\boldsymbol{w}}^{(~n~)}_{{\text{D}},k}}~\to~{{\boldsymbol{w}}^{\dag~}_{{\text{D}},k}};~$${{\boldsymbol{u}}^{(~n~)}_{{\text{U}},j}}~\to~{{\boldsymbol{u}}^{\dag}_{{\text{U}},j}};~$${P^{(~n~)}_{{\text{U}},j}}~\to~{P^{\dag}_{{\text{U}},j}}~$;

    Fix $~{{\boldsymbol{w}}^{(~n~)}_{{\text{D}},k}}~$, $~{{\boldsymbol{u}}^{(~n~)}_{{\text{U}},j}}~$, ${P^{(~n~)}_{{\text{U}},j}}$, solve problem 12a and obtain the result of duplex mode selection $\{~{{\boldsymbol{Q}}^\dag_{{\text{D}}}}~,~{{\boldsymbol{Q}}^\dag_{{\text{U}}}}~\}$ by Algorithm 3 in Subsection 4.2;

    Update ${~{{\boldsymbol{Q}}^{(~{n+1~}~)}_{{\text{D}}}}~}~\to~{~{{\boldsymbol{Q}}^\dag_{{\text{D}}}}~};~$${~{{{\boldsymbol{Q}}}^{(~{n+1~}~)}_{{\text{U}}}}~}~\to~{~{{\boldsymbol{Q}}^\dag_{{\text{U}}}}~}~$;

    until

  •   

    Algorithm 2 Solution to problem 16 with SCA-based algorithm

    convergence; the optimal solutions $(~{~{{\boldsymbol{w}}^\dag_{{{\text{D}}},k}},~{\boldsymbol{u}}^\dag_{{\text{U}},j}},~{P^\dag_{{\text{U}},j}}~)$.

    Require:Initialization: ${{\boldsymbol{Q}}^{(~0~)}_{\text{D}}}$, ${{{{\boldsymbol{Q}}^{(~0~)}_{\text{U}}}}~}~$, $~{{\boldsymbol{w}}^{(~0~)}_{{{\text{D}}},k}}~$, $~{{\boldsymbol{u}}^{(~0~)}_{{\text{U}},j}}~$, ${P^{(~0~)}_{{\text{U}},j}}$.

    repeat

    Solve 33 with fixed duplex mode ${{\boldsymbol{Q}}^{(~n~)}_{\text{D}}}~\to~{{\boldsymbol{Q}}^{(~0~)}_{\text{D}}}~$, ${{{{\boldsymbol{Q}}^{(~n~)}_{{\rm{U}}}}}~}~\to~{{{{\boldsymbol{Q}}^{(~0~)}_{{\rm{U}}}}}~}~$, and denote the optimal solutions as $(~{~{{\boldsymbol{w}}^\dag_{{{\text{D}}},k}},~{\boldsymbol{u}}^\dag_{{\text{U}},j}},~{{{P}}^\dag_{{\text{U}},j}}~)$;

    Update ${{\boldsymbol{w}}^{(~n~)}_{{\text{D}},k}}~\to~{{\boldsymbol{w}}^{\dag~}_{{\text{D}},k}}~$,${{\boldsymbol{u}}^{(~n~)}_{{\text{U}},j}}~\to~{{\boldsymbol{u}}^{\dag}_{{\text{U}},j}}~$,${P^{(~n~)}_{{\text{U}},j}}~\to~{P^{\dag}_{{\text{U}},j}}$;

    $\text{Set~}~{n}~\to~n+1$;

    until

  •   

    Algorithm 3 Solution to problem 34 with SCA-based algorithm

    convergence; the optimal solutions $(~{{{\boldsymbol{Q}}^\dag_{{{\text{D}}}}~},~{{\boldsymbol{Q}}^\dag_{{\text{U}}}~}}~)$.

    Require:Initialization: ${{\boldsymbol{Q}}^{(~0~)}_{\text{D}}}$, ${{{{\boldsymbol{Q}}^{(~0~)}_{{\rm{U}}}}}~}~$, $~{{\boldsymbol{w}}^{(~0~)}_{{{\text{D}}},k}}~$, $~{{\boldsymbol{u}}^{(~0~)}_{{\text{U}},j}}~$, ${P^{(~0~)}_{{\text{U}},j}}$.

    repeat

    Solve 50 with fixed transmitters ${{\boldsymbol{w}}^{(~n~)}_{{{\text{D}}},k}}\to~{{\boldsymbol{w}}^{(~0~)}_{{{\text{D}}},k}}~$, ${{\boldsymbol{u}}^{(~n~)}_{{\text{U}},j}}\to~{{\boldsymbol{u}}^{(~0~)}_{{\text{U}},j}}~$, ${P^{(~n~)}_{{\text{U}},j}}\to~{P^{(~0~)}_{{\text{U}},j}}~$, and denote the optimal solutions as $(~{{{\boldsymbol{Q}}^\dag_{{{\text{D}}}}~},~{{\boldsymbol{Q}}^\dag_{{\text{U}}}~}}~)$;

    Update ${~{{\boldsymbol{Q}}^{(~{n+1~}~)}_{{\text{D}}}}~}~\to~{~{{\boldsymbol{Q}}^\dag_{{\text{D}}}}~}~$,${~{{{\boldsymbol{Q}}}^{(~{n+1~}~)}_{{\text{U}}}}~}~\to~{~{{\boldsymbol{Q}}^\dag_{{\text{U}}}}~}~$;

    $\text{Set~}~{n}~\to~{{n+1}}~$;

    until

qqqq

Contact and support