logo

SCIENCE CHINA Information Sciences, Volume 64 , Issue 8 : 182307(2021) https://doi.org/10.1007/s11432-020-3133-x

Joint resource allocation and power control for radar interference mitigation in multi-UAV networks

More info
  • ReceivedJun 3, 2020
  • AcceptedNov 24, 2020
  • PublishedJun 2, 2021

Abstract


References

[1] Li B, Fei Z, Zhang Y. UAV Communications for 5G and Beyond: Recent Advances and Future Trends. IEEE Internet Things J, 2019, 6: 2241-2263 CrossRef Google Scholar

[2] Li B, Fei Z, Zhang Y. Secure UAV Communication Networks over 5G. IEEE Wireless Commun, 2019, 26: 114-120 CrossRef Google Scholar

[3] Wang J, Jiang C, Han Z. Taking Drones to the Next Level: Cooperative Distributed Unmanned-Aerial-Vehicular Networks for Small and Mini Drones. IEEE Veh Technol Mag, 2017, 12: 73-82 CrossRef Google Scholar

[4] Zeng Y, Lyu J, Zhang R. Cellular-Connected UAV: Potential, Challenges, and Promising Technologies. IEEE Wireless Commun, 2019, 26: 120-127 CrossRef Google Scholar

[5] Fotouhi A, Qiang H, Ding M. Survey on UAV Cellular Communications: Practical Aspects, Standardization Advancements, Regulation, and Security Challenges. IEEE Commun Surv Tutorials, 2019, 21: 3417-3442 CrossRef Google Scholar

[6] Jianan Wang , Ming Xin . Integrated Optimal Formation Control of Multiple Unmanned Aerial Vehicles. IEEE Trans Contr Syst Technol, 2013, 21: 1731-1744 CrossRef Google Scholar

[7] Wang X, Yadav V, Balakrishnan S N. Cooperative UAV Formation Flying With Obstacle/Collision Avoidance. IEEE Trans Contr Syst Technol, 2007, 15: 672-679 CrossRef Google Scholar

[8] Zhang J, Yan J, Zhang P. Collision Avoidance in Fixed-Wing UAV Formation Flight Based on a Consensus Control Algorithm. IEEE Access, 2018, 6: 43672-43682 CrossRef Google Scholar

[9] Lin Y, Wang M, Zhou X. Dynamic Spectrum Interaction of UAV Flight Formation Communication With Priority: A Deep Reinforcement Learning Approach. IEEE Trans Cogn Commun Netw, 2020, 6: 892-903 CrossRef Google Scholar

[10] Ryan A, Zennaro M, Howell A, et al. An overview of emerging results in cooperative UAV control. In: Proceedings of the 43rd IEEE Conference on Decision and Control, Nassau, 2004. 602--607. Google Scholar

[11] Kwag Y K, Choi M S, Jung C H. Collision avoidance radar for UAV. In: Proceedings of 2006 CIE International Conference on Radar, Shanghai, 2006. 1--4. Google Scholar

[12] Kemkemian S, Nouvel-Fiani M, Cornic P, et al. Radar systems for “Sense and Avoid" on UAV. In: Proceedings of International Radar Conference “Surveillance for a Safer World", 2009. 1--6. Google Scholar

[13] Nijsure Y A, Kaddoum G, Khaddaj Mallat N. Cognitive Chaotic UWB-MIMO Detect-Avoid Radar for Autonomous UAV Navigation. IEEE Trans Intell Transp Syst, 2016, 17: 3121-3131 CrossRef Google Scholar

[14] Wu Z, Li J, Zuo J. Path Planning of UAVs Based on Collision Probability and Kalman Filter. IEEE Access, 2018, 6: 34237-34245 CrossRef Google Scholar

[15] Alland S, Stark W, Ali M. Interference in Automotive Radar Systems: Characteristics, mitigation techniques, and current and future research. IEEE Signal Process Mag, 2019, 36: 45-59 CrossRef ADS Google Scholar

[16] Chu P, Zhang J A, Wang X. Interference Characterization and Power Optimization for Automotive Radar With Directional Antenna. IEEE Trans Veh Technol, 2020, 69: 3703-3716 CrossRef Google Scholar

[17] Hu C, Wang Y, Wang R. An improved radar detection and tracking method for small UAV under clutter environment. Sci China Inf Sci, 2019, 62: 029306 CrossRef Google Scholar

[18] Hu J W, Wang M, Zhao C H. Formation control and collision avoidance for multi-UAV systems based on Voronoi partition. Sci China Technol Sci, 2020, 63: 65-72 CrossRef ADS Google Scholar

[19] Lim J H, Lim D W, Cheong B L. Spectrum Sharing in Weather Radar Networked System: Design and Experimentation. IEEE Sens J, 2019, 19: 1720-1729 CrossRef ADS Google Scholar

[20] Martone A, Sherbondy K, Ranney K , et al. Passive sensing for adaptable radar bandwidth. In: Proceedings of IEEE Radar Conference, Arlington, 2015. 280--285. Google Scholar

[21] Martone A F, Ranney K I, Sherbondy K. Spectrum Allocation for Noncooperative Radar Coexistence. IEEE Trans Aerosp Electron Syst, 2018, 54: 90-105 CrossRef ADS Google Scholar

[22] Shi C, Salous S, Wang F. Power allocation for target detection in radar networks based on low probability of intercept: A cooperative game theoretical strategy. Radio Sci, 2017, 52: 1030-1045 CrossRef ADS Google Scholar

[23] Huang J, Fei Z, Wang T. V2X-communication assisted interference minimization for automotive radars. China Commun, 2019, 16: 100-111 CrossRef Google Scholar

[24] Skolnick M. Radar Handbook. New York: Mcgraw-Hill, 2008. Google Scholar

[25] Hao He , Stoica P, Jian Li P. Designing Unimodular Sequence Sets With Good Correlations-Including an Application to MIMO Radar. IEEE Trans Signal Process, 2009, 57: 4391-4405 CrossRef ADS Google Scholar

[26] Garey M R, Johnson D S. Computers and Intractability: A Guide to the Theory of NP-Completeness. New York: W. H. Freeman & Co., 1979. Google Scholar

[27] Zhang S, Zhang H, Di B. Cellular UAV-to-X Communications: Design and Optimization for Multi-UAV Networks. IEEE Trans Wireless Commun, 2019, 18: 1346-1359 CrossRef Google Scholar

[28] Li C, Liu P, Zou C. Spectral-Efficient Cellular Communications With Coexistent One- and Two-Hop Transmissions. IEEE Trans Veh Technol, 2016, 65: 6765-6772 CrossRef Google Scholar

[29] Li C, Zhang S, Liu P. Overhearing Protocol Design Exploiting Intercell Interference in Cooperative Green Networks. IEEE Trans Veh Technol, 2016, 65: 441-446 CrossRef Google Scholar

[30] Chiang M, Tan C W, Palomar D P. Power Control By Geometric Programming. IEEE Trans Wireless Commun, 2007, 6: 2640-2651 CrossRef Google Scholar

[31] Fei Z, Li B, Yang S. A Survey of Multi-Objective Optimization in Wireless Sensor Networks: Metrics, Algorithms, and Open Problems. IEEE Commun Surv Tutorials, 2017, 19: 550-586 CrossRef Google Scholar

[32] Hasch J, Topak E, Schnabel R. Millimeter-Wave Technology for Automotive Radar Sensors in the 77 GHz Frequency Band. IEEE Trans Microwave Theor Techn, 2012, 60: 845-860 CrossRef ADS Google Scholar

  • Figure 1

    (Color online) System model of MUFFS.

  • Figure 2

    Illustration of the search space tree with $K$ = 2 and $N$ = 3.

  • Figure 3

    (Color online) An example of the channel allocation result using GCAA.

  • Table 1  

    Table 1Simulation parameters

    Parameter Value
    Center frequency 35 GHz [11]
    Antenna gain 38 dB [11]
    Radar cross-section 30 dBm [32]
    Maximum UAV transmission power 47 dBm
    Minimum UAV transmission power 30 dBm
    Cross-correlation factor $\beta$ $-20$ dB [25]
    AlgoriTheorem convergence threshold $\epsilon$ 0.01
    Maximum iteration number 5
    Maximum searching width $M$ 8
    Default distance of non-cooperative targets to be sensed 100 m
    Default number of channels 4
    Bandwidth of each channel 200 MHz
    SINR threshold for successful detection $T$ 10 dB [32]
  • Table 2  

    Table 2Performance comparison between Monte Carlo simulation and proposed ICAPCA

    Optimal minimum SINR
    via Monte Carlo simulation
    Minimum SINR
    via proposed ICAPCA
    Proportion of the Monte Carlo results
    better than proposed ICAPCA
    14.6591 dB 14.5265 dB 0.5%
qqqq

Contact and support