logo

SCIENCE CHINA Information Sciences, Volume 64 , Issue 11 : 212301(2021) https://doi.org/10.1007/s11432-020-3119-3

Secure polar coding for a joint source-channel model

More info
  • ReceivedAug 6, 2020
  • AcceptedNov 17, 2020
  • PublishedOct 14, 2021

Abstract


Acknowledgment

This work was supported in part by National Key RD Program of China (Grant No. 2018YFB1801101), in part by National Natural Science Foundation of China (Grant Nos. 61932005, 61941114, 61901051).


Supplement

Appendixes A–D.


References

[1] Wyner A D. The Wire-Tap Channel. Bell Syst Technical J, 1975, 54: 1355-1387 CrossRef Google Scholar

[2] Csiszar I, Korner J. Broadcast channels with confidential messages. IEEE Trans Inform Theory, 1978, 24: 339-348 CrossRef Google Scholar

[3] Maurer U M. Secret key agreement by public discussion from common information. IEEE Trans Inform Theory, 1993, 39: 733-742 CrossRef Google Scholar

[4] Ahlswede R, Csiszar I. Common randomness in information theory and cryptography. I. Secret sharing. IEEE Trans Inform Theory, 1993, 39: 1121-1132 CrossRef Google Scholar

[5] Csiszar I, Narayan P. Common randomness and secret key generation with a helper. IEEE Trans Inform Theory, 2000, 46: 344-366 CrossRef Google Scholar

[6] Bloch M, Barros J. Physical-Layer Security: from Information Theory to Security Engineering. Cambridge: Cambridge University Press, 2011. Google Scholar

[7] Wu Y, Khisti A, Xiao C. A Survey of Physical Layer Security Techniques for 5G Wireless Networks and Challenges Ahead. IEEE J Sel Areas Commun, 2018, 36: 679-695 CrossRef Google Scholar

[8] Hamamreh J M, Furqan H M, Arslan H. Classifications and Applications of Physical Layer Security Techniques for Confidentiality: A Comprehensive Survey. IEEE Commun Surv Tutorials, 2019, 21: 1773-1828 CrossRef Google Scholar

[9] Ji X, Huang K, Jin L. Overview of 5G security technology. Sci China Inf Sci, 2018, 61: 081301 CrossRef Google Scholar

[10] You X, Wang C X, Huang J. Towards 6G wireless communication networks: vision, enabling technologies, and new paradigm shifts. Sci China Inf Sci, 2021, 64: 110301 CrossRef Google Scholar

[11] Prabhakaran V M, Eswaran K, Ramchandran K. Secrecy via Sources and Channels. IEEE Trans Inform Theory, 2012, 58: 6747-6765 CrossRef Google Scholar

[12] Khisti A, Diggavi S N, Wornell G W. Secret-Key Generation Using Correlated Sources and Channels. IEEE Trans Inform Theory, 2012, 58: 652-670 CrossRef Google Scholar

[13] Eswaran K, Prabhakaran V M, Ramchandran K. Secret communication using sources and channels. In: Proceedings of the 42nd Asilomar Conference on Signals, Systems and Computers, 2008. 671--675. Google Scholar

[14] Chen Y L, Cai N , Sezgin A. Wiretap channel with correlated sources. In: Proceedings of IEEE International Conference on Cloud Engineering, 2014. 472--477. Google Scholar

[15] Chen Y, Vogt H, Sezgin A. Gaussian wiretap channels with correlated sources: approaching capacity region within a constant gap. In: Proceedings of IEEE International Conference on Communications Workshops (ICC), 2014. 794--799. Google Scholar

[16] Bunin A, Piantanida P, Shitz S S. The gaussian wiretap channel with correlated sources at the terminals: secret communication and key generation. In: Proceedings of IEEE International Conference on the Science of Electrical Engineering (ICSEE), 2016. 1--5. Google Scholar

[17] Ahlswede R, Cai N. Transmission, identification and common randomness capacities for wire-tape channels with secure feedback from the decoder. Electron Notes Discrete Math, 2005, 21: 155-159 CrossRef Google Scholar

[18] Gunduz D, Brown D R, Poor H V. Secret communication with feedback. In: Proceedings of International Symposium on Information Theory and Its Applications (ISITA), 2008. 1--6. Google Scholar

[19] Ardestanizadeh E, Franceschetti M, Javidi T. Wiretap Channel With Secure Rate-Limited Feedback. IEEE Trans Inform Theory, 2009, 55: 5353-5361 CrossRef Google Scholar

[20] Dai B, Vinck A H, Luo Y, et al. Capacity region of non-degraded wiretap channel with noiseless feedback. In: Proceedings of IEEE International Symposium on Information Theory (ISIT), 2012. 244--248. Google Scholar

[21] Chia Y K, Gamal A E. Wiretap Channel With Causal State Information. IEEE Trans Inform Theory, 2012, 58: 2838-2849 CrossRef Google Scholar

[22] Czap L, Prabhakaran V M, Fragouli C. Secret Communication Over Broadcast Erasure Channels With State-Feedback. IEEE Trans Inform Theory, 2015, 61: 4788-4808 CrossRef Google Scholar

[23] Cohen A, Cohen A. Wiretap Channel With Causal State Information and Secure Rate-Limited Feedback. IEEE Trans Commun, 2016, 64: 1192-1203 CrossRef Google Scholar

[24] Han T S, Sasaki M. Wiretap Channels With Causal State Information: Strong Secrecy. IEEE Trans Inform Theory, 2019, 65: 6750-6765 CrossRef Google Scholar

[25] Bassi G, Piantanida P, Shamai Shitz S. The Wiretap Channel With Generalized Feedback: Secure Communication and Key Generation. IEEE Trans Inform Theory, 2019, 65: 2213-2233 CrossRef Google Scholar

[26] Yamamoto H. Rate-distortion theory for the Shannon cipher system. IEEE Trans Inform Theory, 1997, 43: 827-835 CrossRef Google Scholar

[27] Merhav N. Shannon's Secrecy System With Informed Receivers and its Application to Systematic Coding for Wiretapped Channels. IEEE Trans Inform Theory, 2008, 54: 2723-2734 CrossRef Google Scholar

[28] Kang W, Liu N. Wiretap channel with shared key. In: Proceedings of IEEE Information Theory Workshop (ITW), 2010. 1--5. Google Scholar

[29] Arikan E. Channel Polarization: A Method for Constructing Capacity-Achieving Codes for Symmetric Binary-Input Memoryless Channels. IEEE Trans Inform Theory, 2009, 55: 3051-3073 CrossRef Google Scholar

[30] Yi-Peng Wei , Ulukus S. Polar Coding for the General Wiretap Channel With Extensions to Multiuser Scenarios. IEEE J Sel Areas Commun, 2016, 34: 278-291 CrossRef Google Scholar

[31] Gulcu T C, Barg A. Achieving Secrecy Capacity of the Wiretap Channel and Broadcast Channel With a Confidential Component. IEEE Trans Inform Theory, 2017, 63: 1311-1324 CrossRef Google Scholar

[32] Chou R A, Bloch M R. Polar Coding for the Broadcast Channel With Confidential Messages: A Random Binning Analogy. IEEE Trans Inform Theory, 2016, 62: 2410-2429 CrossRef Google Scholar

[33] Wang H, Tao X, Li N. Polar Coding for the Wiretap Channel With Shared Key. IEEE TransInformForensic Secur, 2018, 13: 1351-1360 CrossRef Google Scholar

[34] Zheng M, Chen W, Ling C. Polar Coding for the Cognitive Interference Channel With Confidential Messages. IEEE J Sel Areas Commun, 2018, 36: 762-774 CrossRef Google Scholar

[35] Alos J O, Fonollosa J R. Polar coding for common message only wiretap broadcast channel. 2019.. arXiv Google Scholar

[36] Maurer U, Wolf S. Information-theoretic key agreement: from weak to strong secrecy for free. In: Proceedings of International Conference on the Theory and Applications of Cryptographic Techniques. Berlin: Springer, 2000. 351--368. Google Scholar

[37] Chou R A, Bloch M R, Abbe E. Polar coding for secret-key generation. In: Proceedings of IEEE Information Theory Workshop (ITW), 2013. 1--5. Google Scholar

[38] Chou R A, Bloch M R, Abbe E. Polar Coding for Secret-Key Generation. IEEE Trans Inform Theory, 2015, 61: 6213-6237 CrossRef Google Scholar

[39] Arikan E. Source polarization. In: Proceedings of IEEE International Symposium on Information Theory (ISIT), 2010. 899--903. Google Scholar

[40] Hassani S H, Urbanke R. Universal polar codes. In: Proceedings of IEEE International Symposium on Information Theory (ISIT), 2014. 1451--1455. Google Scholar

[41] Honda J, Yamamoto H. Polar Coding Without Alphabet Extension for Asymmetric Models. IEEE Trans Inform Theory, 2013, 59: 7829-7838 CrossRef Google Scholar

[42] Cuff P W. Communication in Networks for Coordinating Behavior. Stanford: Stanford University Press, 2009. Google Scholar

[43] Aldous D. Random walks on finite groups and rapidly mixing Markov chains. In: Proceedings of Séminaire de Probabilités XVII 1981/82. Berlin: Springer, 1983. 243--297. Google Scholar

[44] Cover T M, Thomas J A, Wiley, J. Elements of Information Theory. Beijing: Tsinghua University Press, 2003. Google Scholar

  • Figure 1

    (Color online) The joint source-channel model. Three terminals observe components of a discrete memoryless source and communicate over a discrete memoryless wiretap channel. Alice and Bob intend to share a secret message $S$ and a secret key $K$, both of which are required to be kept concealed from Eve.

  • Figure 2

    Partition of the index set $[n]$ for $A^{1:n}$.

  • Figure 5

    Sketch of the encoding scheme for achieving the rate pair (8). Step 1: source part.

  • Figure 6

    Sketch of the encoding scheme for achieving the rate pair (8). Step 2: channel part.

  • Figure 7

    Functional dependence graph of the encoding scheme for achieving the rate pair (8). We split the graph into the source and channel parts for clarity. The dashed lines represent the dependencies between adjacent blocks. In each block $j~\in~[1,m]$, $K_j~\triangleq~(K_j^{1a},~K_j^{1b},~K_j^2)$ and $M_j~\triangleq~(M_j^{1a},~M_j^{1b},~M_j^2)$ are the random variables connecting the two parts. Also note that $\bar~S_j^2~\triangleq~S_j^2~\oplus~K_j^2$ and $\bar~S_j^{1b}\triangleq~S_j^{1b}\oplus~K_j^{1b}$. (a) Source part; (b) channel part.

qqqq

Contact and support