SCIENCE CHINA Information Sciences, Volume 64 , Issue 12 : 222202(2021) https://doi.org/10.1007/s11432-020-3108-6

Nonlinear output-feedback tracking in multiagent systems with an unknown leader and directed communication

More info
  • ReceivedMay 22, 2020
  • AcceptedOct 1, 2020
  • PublishedNov 25, 2021



[1] Jadbabaie A, Jie Lin A, Morse A S. Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Trans Automat Contr, 2003, 48: 988-1001 CrossRef Google Scholar

[2] Hong Y, Chen G, Bushnell L. Distributed observers design for leader-following control of multi-agent networks. Automatica, 2008, 44: 846-850 CrossRef Google Scholar

[3] Yongcan Cao , Wei Ren . Distributed Coordinated Tracking With Reduced Interaction via a Variable Structure Approach. IEEE Trans Automat Contr, 2012, 57: 33-48 CrossRef Google Scholar

[4] Yang T, Saberi A, Stoorvogel A A. Output synchronization for heterogeneous networks of introspective right-invertible agents. Int J Robust NOnlinear Control, 2014, 24: 1821-1844 CrossRef Google Scholar

[5] Shi L, Zhao Z, Lin Z. Robust semi-global leader-following practical consensus of a group of linear systems with imperfect actuators. Sci China Inf Sci, 2017, 60: 072201 CrossRef Google Scholar

[6] Liu T, Huang J. An output-based distributed observer and its application to the cooperative linear output regulation problem. Control Theor Technol, 2019, 17: 62-72 CrossRef Google Scholar

[7] Zhang Y, Su Y. Cooperative output regulation for linear uncertain MIMO multi-agent systems by output feedback. Sci China Inf Sci, 2018, 61: 092206 CrossRef Google Scholar

[8] Su Y, Huang J. Cooperative semi-global robust output regulation for a class of nonlinear uncertain multi-agent systems. Automatica, 2014, 50: 1053-1065 CrossRef Google Scholar

[9] Dong Y, Huang J. Cooperative Global Output Regulation for a Class of Nonlinear Multi-Agent Systems. IEEE Trans Automat Contr, 2014, 59: 1348-1354 CrossRef Google Scholar

[10] Liu W, Huang J. Adaptive leader-following rendezvous and flocking for a class of uncertain second-order nonlinear multi-agent systems. Control Theor Technol, 2017, 15: 354-363 CrossRef Google Scholar

[11] Wang F Y, Liu Z X, Chen Z Q. Leader-following consensus of second-order nonlinear multi-agent systems with intermittent position measurements. Sci China Inf Sci, 2019, 62: 202204. Google Scholar

[12] Xiao W, Cao L, Li H. Observer-based adaptive consensus control for nonlinear multi-agent systems with time-delay. Sci China Inf Sci, 2020, 63: 132202 CrossRef Google Scholar

[13] Liu T, Jiang Z P. Distributed Output-Feedback Control of Nonlinear Multi-Agent Systems. IEEE Trans Automat Contr, 2013, 58: 2912-2917 CrossRef Google Scholar

[14] Wang X, Hong Y, Huang J. A Distributed Control Approach to A Robust Output Regulation Problem for Multi-Agent Linear Systems. IEEE Trans Automat Contr, 2010, 55: 2891-2895 CrossRef Google Scholar

[15] Youfeng Su , Jie Huang . Cooperative Output Regulation of Linear Multi-Agent Systems. IEEE Trans Automat Contr, 2012, 57: 1062-1066 CrossRef Google Scholar

[16] Isidori A, Marconi L, Casadei G. Robust Output Synchronization of a Network of Heterogeneous Nonlinear Agents Via Nonlinear Regulation Theory. IEEE Trans Automat Contr, 2014, 59: 2680-2691 CrossRef Google Scholar

[17] Lu M, Huang J. Cooperative Global Robust Output Regulation for a Class of Nonlinear Multi-Agent Systems With a Nonlinear Leader. IEEE Trans Automat Contr, 2016, 61: 3557-3562 CrossRef Google Scholar

[18] Su Y, Huang J. Cooperative adaptive output regulation for a class of nonlinear uncertain multi-agent systems with unknown leader. Syst Control Lett, 2013, 62: 461-467 CrossRef Google Scholar

[19] Ding Z, Li Z. Distributed adaptive consensus control of nonlinear output-feedback systems on directed graphs. Automatica, 2016, 72: 46-52 CrossRef Google Scholar

[20] Wang X, Su Y, Xu D. A nonlinear internal model design for heterogeneous second-order multi-agent systems with unknown leader. Automatica, 2018, 91: 27-35 CrossRef Google Scholar

[21] Sontag E D. Input to state stability: basic concepts and results. In: Nonlinear and Optimal Control Theory. Berlin: Springer, 2007. 163--220. Google Scholar

[22] Jiang Z P, Mareels I, Hill D J. A Unifying Framework for Global Regulation Via Nonlinear Output Feedback: From ISS to iISS. IEEE Trans Automat Contr, 2004, 49: 549-562 CrossRef Google Scholar

[23] Xu D, Wang X, Chen Z. Output regulation of nonlinear output feedback systems with exponential parameter convergence. Syst Control Lett, 2016, 88: 81-90 CrossRef Google Scholar

[24] Krstic M, Kanellakopoulos I, Kokotovic P V. Nonlinear and Adaptive Control Design New York: Wiley, 1995. Google Scholar

[25] Marino R, Tomei P. Global adaptive output-feedback control of nonlinear systems. I. Linear parameterization. IEEE Trans Automat Contr, 1993, 38: 17-32 CrossRef Google Scholar

[26] Marino R, Tomei P. Nonlinear Control Design: Geometric, Adaptive and Robust London: Prentice Hall, 1995. Google Scholar

[27] Besançon G. Global output feedback tracking control for a class of Lagrangian systems. Automatica 2000, 36: 1915--1921. Google Scholar

[28] Godsil C, Royle G. Algebraic Graph Theory New York: Springer-Verlag, 2001. Google Scholar

[29] Berman A, Plemmons R J. Nonnegative Matrices in the Mathematical Sciences New York: Academic Press Inc., 1979. Google Scholar

[30] Huang J. Remarks on robust output regulation problem for nonlinear systems. IEEE Trans Autom Control, 2001, 46: 2028--2031. Google Scholar

[31] Jiang Z P. Global output feedback control with disturbance attenuation for minimum-phase nonlinear systems. Syst Control Lett, 2000, 39: 155-164 CrossRef Google Scholar

[32] Huang J. Nonlinear Output Regulation: Theory and Applications Philadelphia: SIAM, 2004. Google Scholar

[33] Byrnes C I, Priscoli F D, Isidori A. Output Regulation of Uncertain Nonlinear Systems New York: Springer Science & Business Media, 1997. Google Scholar

[34] Xu D. Constructive Nonlinear Internal Models for Global Robust Output Regulation and Application. IEEE Trans Automat Contr, 2018, 63: 1523-1530 CrossRef Google Scholar

[35] Wang X, Xu D, Ji H. Robust almost output consensus in networks of nonlinear agents with external disturbances. Automatica, 2016, 70: 303-311 CrossRef Google Scholar

[36] Khalil H K. Nonlinear Systems 3rd ed. New Jersey: Prentice Hall, 2002. Google Scholar

[37] Wu Y Q, Yu J B, Zhao Y. Further Results on Global Asymptotic Regulation Control for a Class of Nonlinear Systems With iISS Inverse Dynamics. IEEE Trans Automat Contr, 2011, 56: 941-946 CrossRef Google Scholar

[38] Wang X, Su Y, Xu D. Cooperative robust output regulation of linear uncertain multiple multivariable systems with performance constraint. Automatica, 2018, 95: 137-145 CrossRef Google Scholar

[39] Francis B A, Wonham W M. The internal model principle of control theory. Automatica, 1976, 12: 457-465 CrossRef Google Scholar

[40] Hong J, Bernstein D S. Adaptive stabilization of non-linear oscillators using direct adaptive control. Int J Control, 2001, 74: 432-444 CrossRef Google Scholar

[41] Li W, Yao X, Krstic M. Adaptive-gain observer-based stabilization of stochastic strict-feedback systems with sensor uncertainty. Automatica, 2020, 120: 109112 CrossRef Google Scholar


Contact and support